

caBIG™, caTissue, and Achieving Silver-Level Compatibility

lan Fore D.Phil.

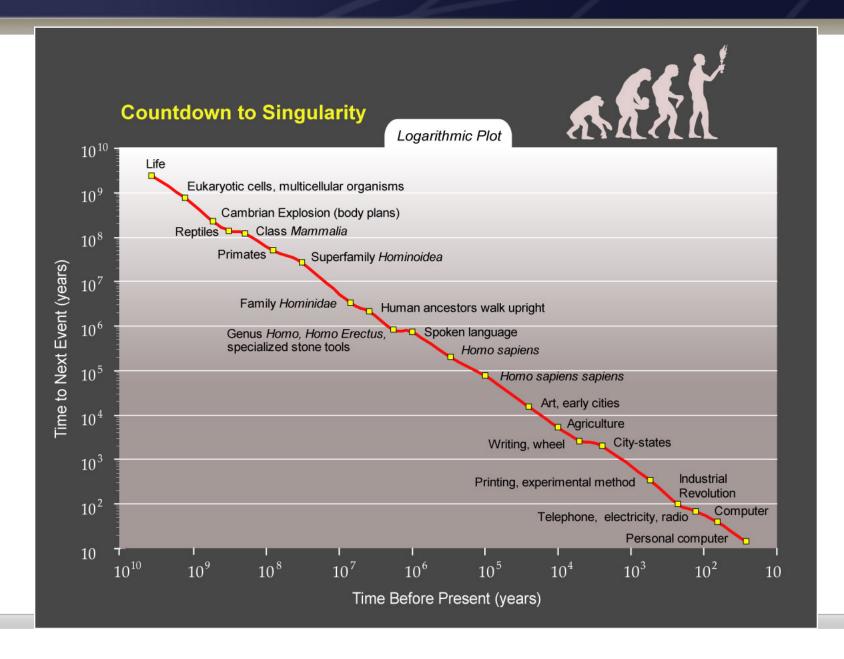
Associate Director, Biorepository and Pathology Informatics
NCI Center for Biomedical Informatics and Information Technology

January 28, 2008

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

December 2006


Unprecedented Potential for Progress

- Technological change is exponential, not linear
 - "We won't experience 100 years of progress in the 21st century it will be more like 20,000 years of progress (at today's rate)."
 - Ray Kurzweil, The Law of Accelerating Returns
- Scientific knowledge will double in the next 3 years
- Biologic knowledge will double in the next 5 years
- The sum of all human knowledge is just 1% of what it will be in the year 2050

Kurzweil - The Singularity is Near

Outline

- Informatics in the Best Practices
 - Functions
 - Development
 - Security
- caBIG
 - Why caBIG compatibility?
 - What does it take?
 - Support programs
- caBIG and Tissue Banks
 - caTissue Core
 - caTIES
 - caTissue Suite

Informatics and the Best Practices

Functionality - within the repository

- Aim to identify the major areas that biorepository software should support
 - Participant registration
 - Consent tracking
 - Biospecimen collection
 - Processing
 - Storage
 - Distribution
 - Specimen QA & QC
 - Security
 - Who can see/access/order which specimens
 - Reporting
 - Help biorepository managers to manage their collection...
 - What's past its "use by" date

Specimen tracking

- Treat each physically distinct entity as a different specimen
 - ... with its own identifier
- Maintain parent-child relationship of specimens
 - Aliquoting
 - Molecular extracts
- Linkage to physical labelling
 - Barcodes

Integration

- Seek to integrate with those clinical data systems that provide useful clinical annotation of stored biospecimens
 - Pathology systems
 - Anatomic pathology
 - Clinical pathology
 - Cancer registries
 - Operating room systems
 - Anesthesia records

Security

- To match the special nature of human biospecimens systems should be protected by adequate security
 - Physical access to systems
 - Back up of systems containing often irreplaceable resources
 - Login protections
 - Role based security that only allows access to authorized information
- National Institute of Standards and Technology (NIST)
- Risk Management Guide for Information Technology Systems
 - Use to help determine level of risk for a particular system
 - Set security mechanisms to match the risk

Regulatory and sharing requirements

- Health Insurance Portability and Accountability Act (HIPAA)
- Human Subjects Research CFR Title 45 Part 46
- FDA requirements CFR Title 21 Part 11
- NIH Principles and Guidelines for Sharing of Biomedical Resources
- NIH Data Sharing Policy

Choosing a system

- Use of structured information
 - Databases instead of free text
- Build vs Buy
 - Understand the true costs
 - Plan for the future
 - Establishing a resource that will realize its value in years
 - Make sure the informatics will still be around then
 - Open source

Some Biospecimen Software Tools

Name	Organization	License	caBIG Compatibility
Sapphire R4	LabVantage	Commercial	Bronze - under review
<u>Freezerworks</u>	Dataworks Development	Commercial	Bronze
LabMatrix	BioFortis	Commercial	Unknown
caTissue Core	caBIG	Open source	Silver
Waban LIMS	Waban	Commercial	Unknown
Biological Specimen Inventory System (BSI)	IMS	Commercial	Bronze
BIGR - Biomaterials and Information for Genomic Research	GulfStream Bioinformatics	Commercial	Unknown
Labrador	NCI	Unknown	Unknown
Biomaterial Tracking and Management - Research	Daedalus Software	Commercial	Unknown
TissueMetrix	Artificial Intelligence in Medicine Inc.	Commercial	Unknown
<u>Oncore</u>	PercipEnz	Commercial	Unknown

If you're going to build...

- End user involvement
- Use cases
- Follow a system development methodology
 - E.g. Unified Process
- Understand the true costs
 - Brooks Law
 - "Adding manpower to a late software project makes it later."
 - Costs of maintenance and support
 - The Mythical Man Month Fred P Brooks, Jr.
- Strive for Capability Maturity Model Level 3

caBIG™ NCI's Approach to the IT Infrastructure

caBIG Community

Addresses the need for consistent, open and comprehensive tools for clinical trials management.

Integrative Cancer Research

Provides tools and systems to enable integration and sharing of information.

Tissue Banks & Pathology Tools

Provides for the integration, development, and implementation of tissue and pathology tools.

In vivo Imaging

Provides for the sharing and analysis of in vivo imaging data.

Responsible for evaluating, developing, and integrating systems for vocabulary and ontology content, standards, and software systems for content delivery.

Data Elements

Developing architectural standards and architecture necessary for other workspaces.

Architecture

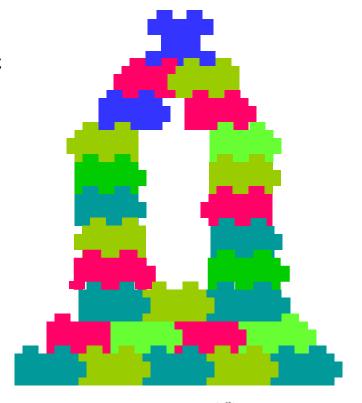
Vocabularies & Common

Data Sharing and Intellectual Capital

sharing of data, applications and infrastructure within the cancer community.

Training

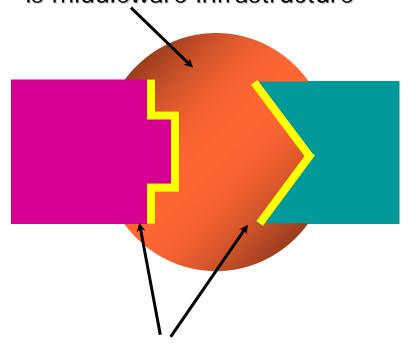
training in the use of the caBIG[™] resources including on-line turtorials, workshops, training programs.


Strategic Planning

Assists in identifying strategic priorities for the development and evolution of the caBIG™ effort.

caBIG Approach

- Modules that address specific needs
- Connect through defined Electronic interfaces
- Use of international data standards



Boundaries and Interfaces

- focus on boundaries of how how things fit together, not on the internal details
- once they're built: assume that will be diverse & changing

The glue that binds parts together is middleware infrastructure

Shape of boundary is defined in APIs /

Interoperability benefits for Biospecimens

- Virtual biorepositories
 - The ability to search networked biospecimen databases
- Support for multi site studies
 - Specimens collected at multiple locations
 - E.g. Prostate SPORE Biomarker study
- Rare diseases
 - Statistical power only reached through pooling resources
- Biospecimens are the raw material for molecular analysis platforms
 - Need to exchange data with their informatics systems
- Linkage to clinical data on biospecimens
 - Key data on specimens and patients exists in other systems
- Development of common practices for biospecimen handling
 - Establishing common data elements will support this

Biospecimen Best Practices Toolkit: Written Background Materials

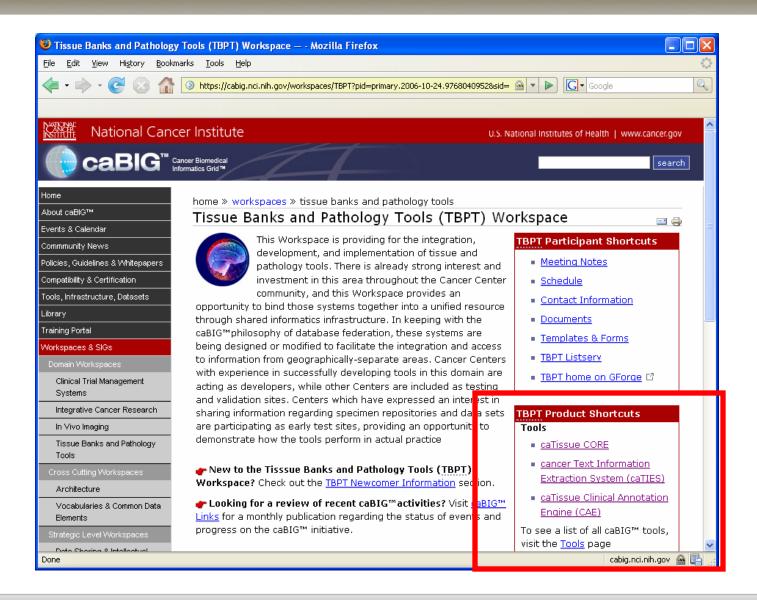
- Items for distribution at meetings and through the OBBR Web site
 - ✓ NCI Best Practices for Biospecimen Resources
 - Biospecimen Basics: An Overview of the NCI Best Practices for Biospecimen Resources
 - ✓ Implementing caBIG™ for Biospecimen Resources: An Overview
 - ✓ Implementing caBIG™ for Biospecimen Resources: Next Steps
 - ✓ Providing Your Tissue for Research
 - Other biospecimen-related articles, publications, and news stories of interest

Options for Biospecimen Resources

Option	Operating Scenario	Recommended Solution
1	Your resource has a paper-based system or a homegrown tool that would not be painful to abandon.	Adopt caTissue Core, and migrate existing electronic data to new tool.
2	Your resource has an existing basic tool that you want to keep. Examples: Access or mySQL database.	Become caBIG [™] compatible by installing caTissue Core, and then mapping your tool to it. Connect from your tool to the outside world through caTissue Core.
3	Your resource has an existing informatics tool - more complex than a simple database, with separate modules for reporting and storage (e.g., standard reports are a small extract from a larger database system).	Make the existing tool caBIG [™] compatible for your standard reports only. Data generated in required reports would be caBIG [™] compatible; the underlying data need not be.
4	Your resource has an existing complex informatics tool (like Option 3), but your reporting needs vary greatly, and you would like to have the entire system caBIG™ compatible for maximum flexibility.	Make the full database compatible, by creating an interface that maps the existing tool's data structures to caBIG™ standards. This is the highest investment solution.

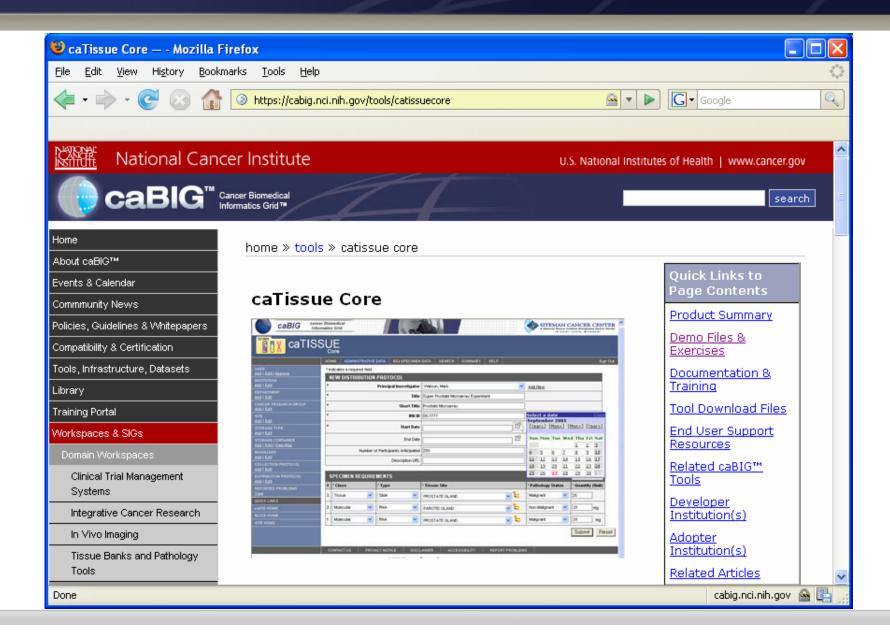
caBIG Biorepository and Pathology Tools

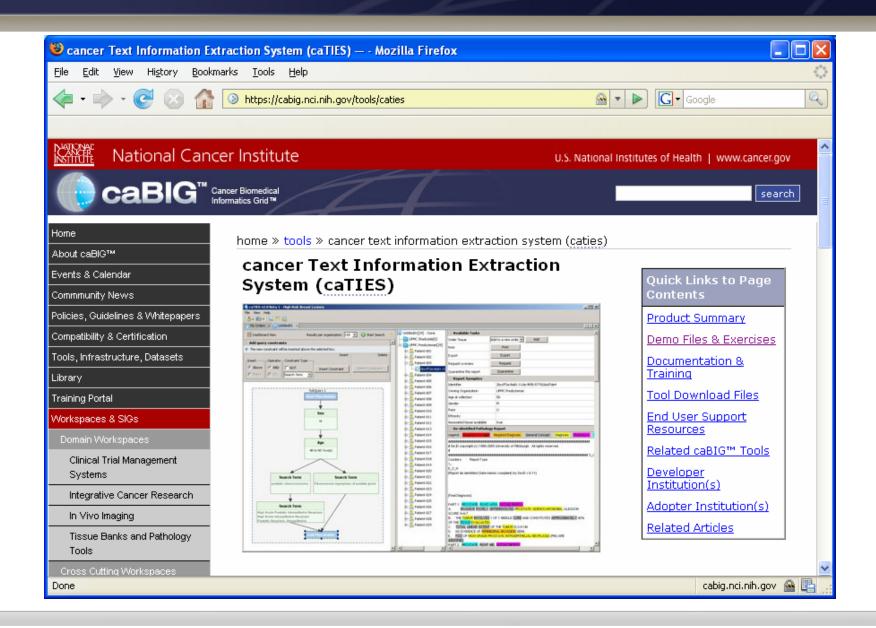
caBIG[™] Benefits Biospecimen Resource Leaders, Researchers and Advocates



- Leveraging existing software tools available through caBIG™ reduces software development costs for biospecimen resources
- The shared standards governing caBIG™ allows even small repositories to advertise their presence and specimen/data availability – AND – learn what others have to offer
- Your own research comes first you can select the data to share
- caBIG[™] tools already have built-in security and privacy considerations – enhancing patient confidence
- Increased data sharing increases the effectiveness and efficiency of cancer research – helping individual scientists, the cancer research community, and ultimately the cancer patient

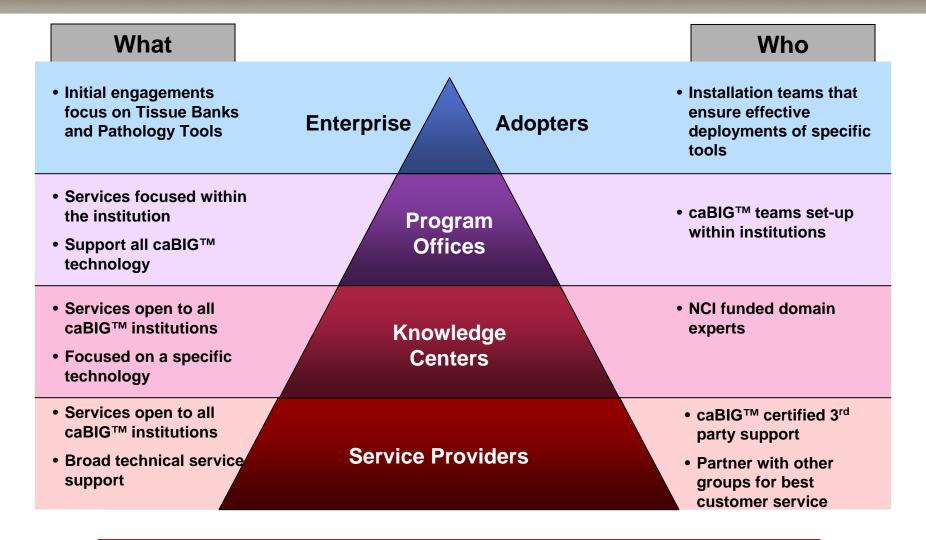
The willingness of cancer patients to share tissue is fundamental to cancer research. Our willingness to share biospecimen-related data is critical to maintaining public trust.


caBIG Portal: http://caBIG.nci.nih.gov


caTissue Core

cancer Text Information Extraction System

EnterpriseSupport Network


U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

December 2006

Facilitating Next Generation Adoption

Ongoing Tool Development, Adoption and Participation

Stay Connected to the caBIG™ Community

For more background visit:

caBIG.cancer.gov

To join the caBIG[™] technical effort visit: caBIG.nci.nih.gov

