OBBR Office of Biorepositories and Biospecimen Research

NCI Best Practices for Biospecimen Resources

Technical and Operational Best Practices (Real-World Perspective)

Martin L. Ferguson, Ph.D. 2007-11-05

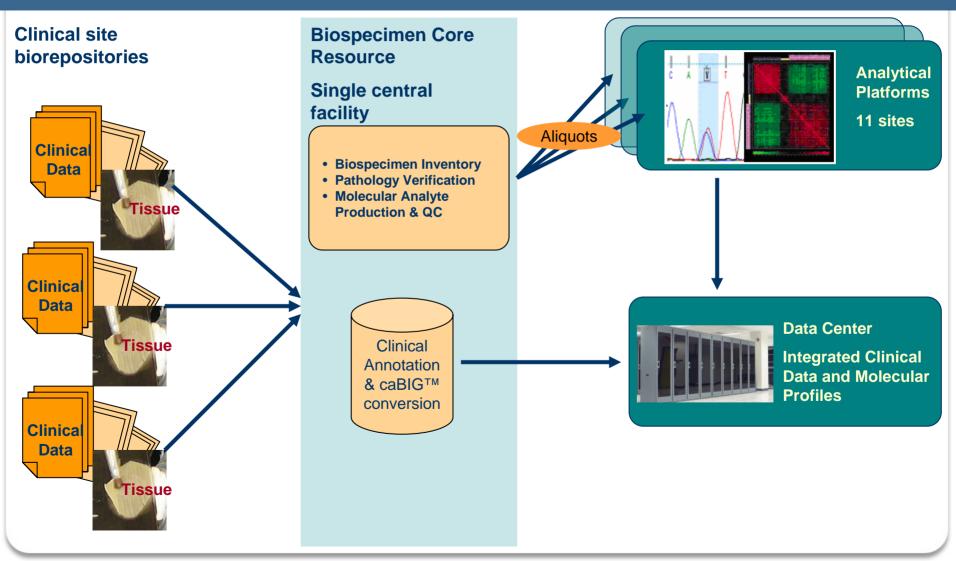
- Introduction and Perspective
- Examples
- Issues Encountered and NCI Best Practices
- Conclusion

- Introduction and Perspective
- Examples
- Issues Encountered and NCI Best
 Practices
- Conclusion

Introduction and Perspective

- The Cancer Genome Atlas (TCGA) pilot project
 - 3 year pilot project of the NCI and NHGRI to comprehensively catalog the molecular changes associated with cancer.
 - Three different cancers: brain, ovarian and lung
 - Biospecimens obtained from a network of <u>retrospective</u> collections at multiple academic medical centers.
 - Large scale molecular analysis <u>10 platforms</u>, each doing every case in common.
 - (RNA and micro-RNA profiling, copy number variation, translocation analysis, epigentics, and sequencing.)
 - Clinical data integrated with molecular data.
 - Integrated data sets made available to the broad research community.

Introduction -Not in scope for this presentation


 OBBR Office of Biorepositories and Biospecimen Research

- Other important factors that impact biospecimen access:
 - Human subjects policies, IRB approvals, HIPAA
 - Re-contacting and re-consenting of living patients
 - Material Transfer Agreement, Intellectual Property, Authorship
 - Informatics
 - Extraction and transfer of associated clinical data
 - Process data
 - Standards compliance (caBIG[™])
 - Costs

Introduction -TCGA Goals & Biospecimen Quantity and Quality

- 500 individual cases successfully yielding molecular profiles
 - Estimated 35% histological + molecular QC failure = 760 cases
 - Statistical power vs. financial constraints
 - Preferably from 2 collections to minimize variability
- Germline DNA source for every case
- Frozen samples with at least 200 mg of tumor tissue per case
 - DNA + RNA from each sample, enough for all 11 sites
 - No WGA
- At least 80% of each sample composed of viable tumor cells on histologic assessment
 - No LCM

Introduction -TCGA Operational Overview

Introduction -Sample Selection Process – on paper

- Request for Information issued to identify interested biorepository custodians
 - ~75 responses
- Follow-up phone calls to clarify/verify data provided
- Site visits to institutions with estimated sufficient sample sets
 - Did not include "audit" level review i.e. going into freezers or databases
- Determination of source's willingness to donate samples and participate in TCGA

 Conclusion: TCGA needs could be met by 2 collections per cancer

$\overline{\text{OBBR}}$ Office of Biorepositories and Biospecimen Research

- Introduction and Perspective
- Examples
- Issues Encountered and NCI Best
 Practices
- Conclusion

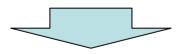
Examples -Real numbers from beginning ops

• All logged sample number dropped 95 – 99%

	Repository 1	Repository 2	
# Frozen samples logged in collection	5000+	1200+	
# Samples meeting spec upon detailed (non-physical) review	1392	120	
# Samples meeting physical specs	174	18	 Before full pathology review

Examples -Top 5 Sources of GBM Failure

- Matched normal germline DNA controls (blood or other) lacking
- Insufficient tumor cellularity in samples
 - Tumor cellular composition too low
 - % necrosis too high
- Specimen size too small
 - Insufficient tissue to generate minimum required amount of DNA/RNA for all analyses
- Molecular quality insufficient
 - QC failure of DNA or RNA
 - Insufficient amount
- Tumor not primary disease
 - Samples derived from recurrent, i.e. previously treated GBMs (confounding issue: Rx-related effects)


$\overline{\text{OBBR}}$ Office of Biorepositories and Biospecimen Research

- Introduction and Perspective
- Examples
- Issues Encountered and NCI Best Practices
- Conclusion

Best Practices -Lessons Learned

- Quality of existing sample sets are typically overestimated by biobanks
- Collection of control samples is not routine in existing protocols
- Anatomic site-matched normal controls may be impossible to acquire
- Histologic quality does not guarantee molecular quality
- Data are lacking to define quality parameter cut-points accurately
 - How does cellular composition affect genomics profiling?
 - Necrosis?
 - Yields of DNA, RNA per weight by tissue?

 Biospecimen research is needed to understand effects of tissue variables on analysis data from different platforms

Best Practices -Specimen Collection and Processing

 DBBR Office of Biorepositories and Biospecimen Research

- Tissue collection protocols need to start at the beginning
 Surgical /OR staff, biopsies, pre-op, consent
- Handling appropriate for specimen type and study design
- Minimize collection and processing time
- Standard Operating Procedures
 - Quality management system
 - Document all protocols
 - Training programs
- Tag all specimens with human + machine readable labels
 - Alphanumeric code
 - Barcode / RFID

Best Practices -Collecting and Managing Clinical Data

 OBBR Office of Biorepositories and Biospecimen Research

- Relevant clinical data
 - Longitudinal data, clinical follow-up, outcomes
 - CTMS: patient tracking, study calendars, electronic data capture
- Relevant epidemiologic data
- Informatics system for tracking all aspects of collection, processing and distribution
 - caBIG™
- Comply with privacy rules and human subjects regulations

Best Practices -Monitoring and Storage

- Inventory tracking system
 - Check in / check out, log all handlings
- Store specimens in a "stabilized state"
 - Appropriate temperature
 - Aliquots
 - Minimize thawing and refreezing
- Disposal according to SOPs
- Monitor and document storage equipment

Temperature tracking critical

Best Practices -Record Keeping

IRB protocol governing collection

- ✓ Informed consent
 - ✓ Version year, tiered, permitted uses, re-contact OK
- Exemptions
- Subject vital status
- Material Transfer parameters
- Date of Collection
 - Archived specimens prior to the era of molecular medicine
 - Prior to HIPAA Privacy Rule (April 14, 2003)

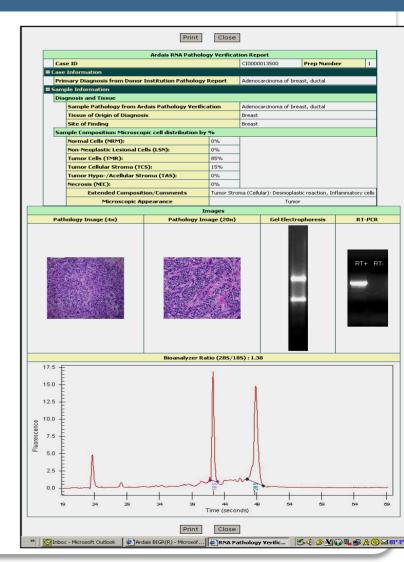
Best Practices -Packaging and Shipping

- Packaging procedures
- Records of specimen distribution
- Shipping procedures
 - Appropriate temperature
 - Length of time
- Shipping container electronic tagging

Temperature, orientation

Train personnel

Best Practices -Biosafety Procedures



- Identify risks and hazards
 - Infectious, Radiation, Chemical
- Record exposure incidents
- Provide treatment
- Indemnification agreements

- Introduction and Perspective
- Examples
- Issues Encountered and NCI Best
 Practices
- Conclusion

Conclusions

- Garbage In -> Garbage Out
- Make the up-front investment in samples – it will be worth it
 - Tissue Banking is the protocol.
 Too often it is considered a sideline
 - Treat your donors like clinical trail participants.
 - Track participants over time to get data: clinical follow-up / outcomes
 - Do histopathology review (and molecular QC) prior to deposition
 - Categorize your samples
 - Discard what should be discarded

OBBR Office of Biorepositories and Biospecimen Research

NCI Best Practices for Biospecimen Resources

Technical and Operational Best Practices (Real-World Perspective)

Martin L. Ferguson, Ph.D. 2007-11-05

