The Challenges of Tissue Based investigation in Prostate Cancer

Christopher J. Logothetis, M.D.

The Challenge

- Tumor Volume
- Tumor heterogeneity
- Limitation of individual discovery platforms
- Pre -analytic determinates

UT M.D. Anderson Cancer Center Tissue Resource & Pathology Core

The Challenge

- <u>Tumor Volume</u>
- Tumor heterogeneity
- Limitation of individual discovery platforms
- Pre -analytic determinates

A Preoperative Selenium and Vitamin E Trial in Prostate Cancer

PSA < 10 ng/mL

• GS </= 7

Biomarker Expression: Core Biopsies — RPS Sections

Ex Vivo RPS Biopsy

Gene Expression Profiling

Kim J, 2008

The Prostate is An Organ Composed of <u>different</u> Tissues and Cells

Assumption: the application of therapy will result in tissue, or cell-type specific alterations in gene expression

Cell-Type and Treatment Specific Effects in Gene Expression Profile

Non-neoplastic Epithelium

Cancer

Interacting molecular pathways regulate Prostate Cancer growth

Assumption: signaling networks are modulated in a cell specific manner

Response of Stromal Cells and Cancer Cells Differs: Network Analysis to Identify Hubs

Prostate Cancer Prevention Trial

**** Dynamic allocation**

Conclusion

Limitations of small volume prostate cancer can be reduced by using immediate ex-vivo biopsy strategy

The Challenge

- Tumor Volume
- <u>Tumor heterogeneity</u>
- Limitation of individual discovery
 platforms
- Pre -analytic determinates

UT M.D. Anderson Cancer Center Tissue Resource & Pathology Core

UT M.D. Anderson Cancer Center Tissue Resource & Pathology Core

Pre-Operative Model

Standardization of Morphologic Characteristics

- Allows for objective comparison of data
- Leads to uniform tissue selection criteria for biomarker / molecular studies

Tissue Microarray Construction

			Protoco	I: Thalidomide						D D	D D							066600	0.000	
Pt. Number: f	RP Group:	A B O	Date reviewed:	4/4/05	S-	s.	C. C.	G. G.	D83	/D5 D53	PZ PZ D82 D82	D82	12 12 D82 D82	1Z 1Z D82 D82		6	60 00	000000		
MR#:	Group Ca #1:	A BC	Date arrayed:		DSI	D51	DSI DSI	DSI DSI	D62	D62 D62	D62 D61	151 151	D61 D61	D51 D51			060046	•		2
SS#: 5501-11308	Group Ca #2:	ABC			D51	D51	D61 D61	D51 D51	/D5I								006600			
# Foci arrayed:	1 4	ocation in Specimen			D83	18 D83	D63 D63	D53 D53	T		a a	-			0			900030		
# Foci PZ arrayed:	1 .				C38	C38	C38 C38	12 12 C38 C38	12 C38	12 12 C38 C38	12 12 C38 C38	12 C38	SC SC C42 C42	G12 C35	C35 C35		000000	000000	690000	
# Foci TZ arrayed:	2.				Lg C43	kr C43	Ig Ig CI3 C35	Ig Ig C35 C35	Fg C35	Fg Fg C42 C43	lg lg Cl3 C38	Lg C38	Id Id C42 C42	Id Id C43 C43	C43 C43					
# Foci multiple zones arrayed:	L .				Pz	Pz	Pz Pz	Pz Pz	Tz E44	Tz Tz	Tz Tz	Tz	Sc Sc Ease	S: S: Enc	Sc Sc Eat		0.9	000000	000000	
		Array Location		Block/s	lg E00	lg Die	Ig Ig	lg lg	Fg	Fg Fg Fg	Fg Fg Fg	Fg	Id Id E48 E48	B48 B48	B48 B49		0 0	000	90	
# cores single cells, contributiens: (green	N	letter- 5.13-5.14	#_6	Cos, C49, C42	50	540	D+0 D+0	Det Det	D++	Dee Dee	D++ D4)	1949	548 540						-	1
# COTES strome single cells, contaiclusters:		letter-	#		Pz	Pz	Pz Pz	Pz Pz	S: CIR	S: S:	Sc Sc (72) (72)	S:	Fg Fg OF	Fg Fg	Fg Fg		000.00	0000		1 m
# COFES (solated plands: (blue)	V	letter- 6.1 - 6.6	#- 6	C35 C43	C.	G	0 0	C C C	14	и и	N 02 05	66	C4/ C4/	048 02	02 05					
# COFES strome small glands:	_	letter-	#		CS	C3	C3 C48	C48 C48	C3	C53 C47	C47					1.427	00	500000	0000	
# cores funed glands: (red)	×	letter- 6.7-6.12	# 6	Con Cre, 6434	Pz D44	Pz D44			Tz D44	Tz Tz DB DB	Tz Tz DP0 DP0	Tz D86	Sc Sc D36 D36	S: S: D44 D44	Sc Sc D49 D49		0000	000000	030000	1
# COTOS stroma fused glands:		letter-	#		lg Day	lg D49	lg lg D43 D86	Ig Ig D86 D39	Fg D43	Fg Fg DB D4	Fg Fg D44 D39	Fg	Cr Cr D86 D86	G G D86 D86	G G D# D#					
# COTES cribriform: (black)		letter-	#		Pr	Pr	Pz Pz	Pr Pr	8-	S. S.	S- S-	S:	Fe Fe	Fe Fe	Fe Fe		\$ 9 9 9 C 9 V	60 00	000000	1
# COTOS stroma cribritorm:		letter-	#		C57	C58	C8 C8	0.5 0.5	Ctő	C66 C54	C54 C55	CS5	රා රා	ด้ม ด้ม	ด์ ด์	. 9	0 60000	000000		
# cores introducted sprend: (green)-	×	letter- 6.13-6.19	" 16	638, C40, C42	C61	C66	C66 C66	06 05	C57	C7 C7	C7 C7	C57				1	010000			
# COTOS stroma intraductal apread		letter-	#	1	Tz CB	Tz CB	Tz Tz CB CB	Tz Tz C48 C48	lg CI3	k k CB CB	lg lg CB CB	lg CP	Fg Fg CS4 CS4	Fg Fg C48 C48	Fg Fg CP CP		00000	666941		
# COTES NL PZ glands (black) 25	V	letter- 5.1 - 5.6	# 6	(i)	Cr CP	Gr CP	GP GP	GP GP								2*				1
# cores nr. 12 plants (blue)	K	lotter- 5.7 - 5./3	# 5	631	Tz	Tr	Tz Tz	Tz Tz	Fe	Fe Fe	Fe Fe	Fe	0 0	0 0	0 0		666668	0009	000000	
# GOTES NL PZ strome		letter-	#	· · · · · · · · · · · · · · · · · · ·	D39	D89	D39 D39	D89 D39	D48	D48 D54	D54 D47	D47	D39 D39	D39 D43	D43 D43		000	1		
# COTES other		letter-	#		D43	D43	D43													
	1				Tz CS4	Tz CS4	Tz Tz C54 C54	Tz Tz CS4 CS4	1g (52	C2 C2	lg lg CS2 CS2	kg CS2	Cr Cr C47 C48	G G G G G G G G G G G G G G G G G G G	G7 G7	. 11	000000	666666	663666	1
Is focus arrayed dominant: Yes _	V_ No	Call	P Stage: pT3a	NO MOR	Pa C57	Pa C63	Pa Pa C62 C48	Pa Pa CS2 CS2	Ln BS	In In B5 B6	Ln Ln Bó Bó	Ln Bó				50) -				
20 Ca # 1: Loc. Ca # 1: 27	ELPt	AN A	(pT36)	VI MOR+	Pz	Pz	Pz Pz	Pz Pz	Tz	Tz Tz	Tz Tz	Tz	Sc Sc	S: S:	Sc Sc			DASSES		
ZO Ca # 2: Loc. Ca # 2:			270		D56 Fg	D86 Fg	D66 D66 Fg Fg	D56 D56 Fg Fg	D56	D86 D60	D60 D65	D65	D65 D65	D71 D71	D71 D71		000400	10.00.000		
		Ca#2	P Stage: pT3a 1	NO MOR-	D65	D65 Ig	D71 D71 Ig Ig	D71 D71									.044			
RPGS GG ((report)		pT35 1	N1 MOR+	D66	D56	D56 D56												100000	1
RPGS GG((PT)		LoT?		Pz C42	Pz C42	Pz Pz C42 C37	Pz Pz C37 C37	Tz C37	Tz Tz C37 C38	Tz Tz C42 C42	Tz CI2	lg lg C38 C38	lg lg C42 C42	lg lg C42 C42		064400	9966966	400000	
Notes: 3, 4, 5			P Stage oT3a 1	MOR-	Fg C42	Fg C42	Fg Fg C2 C38	Fg Fg C38 C38									000000			
and the		Kad. Pros	pT3b (N1 MOR+	Tz	Tz	Tz Tz	Tz Tz	łg	k k	lg Ig	łg	Fg Fg	Fg Fg	Fg Fg					
	_		146-24	See Th	C47	C47	C47 C47	CI CI	C47	C47 C47	C47 C52	CS2	CS2 C47	C17 CSI	C51 C51		949540	000000		
				Revised 3/21/05	lg C55	lg C55	lg lg C5 C5	lg lg C55 C55	Fg CS5	Fg Fg C55 C55	Fg Fg C54 C54						1000	0.0000		
																		ALC: 10	1 S S .	
	1. 2000							1	~									TRANSAG	itina .	

Pre-Operative Model Thalidomide Trial

Effect on stromal-epithelial interaction

NT NT NM NM

Serial Modulation Microenvironment & Neoplastic Epithelium

Serial Modulation Microenvironment & Neoplastic Epithelium

The Challenge

- Tumor Volume
- Tumor heterogeneity
- Limitation of individual discovery
 platforms
- Pre -analytic determinates

CT Perfusion Study (confirmation with imaging)

Pretreatment

Posttreatment

Integration of Reverse Phase & Tissue Microarray

(MTOR inhibition Prostate Cancer)

Efstathiou & Tsavachidou

Conclusions

- Multiplatform confirmation can provide confidence in results
- Hypothesis testing more reliable than discovery
- Fixed genotoxic stress in "pre operative model" may limit effects of heterogeneity and more efficiently inform

The Challenge

- Tumor Volume
- Tumor heterogeneity
- Limitation of individual discovery platforms
- Pre -analytic determinates

Robotic Assisted Prostatectomy

(11 discrete steps)

1.	Dissect SV/Vasa 20	
2.	Drop bladder	8
3.	Endopelvics	10
4.	DVC	10
5.	Anterior bladder 6	
6.	Posterior bladder 10	
7.	Pedicles	40
8.	Urethra	11
9.	PLND	17
10.	Posterior anastomosis	15
11.	Anterior anastomosis	14
	Totals	140

•Pedicles are divided at the end of step 7,

•average warm ischemia time 57 min!

•if trainees involved :warm ischemia increase by 60!

Potential solution: immediate extraction/reconstruction with a balloon port

Davis J, 2008

Immediate Extraction

- For patients on a study with molecular endpoints
- Last pedicle saved to the end, near urethra
- Specimen placed in a bag, incision enlarged for removal—to ice
- Suture reconstruction to size of port balloon completes the pneumoperitoneum seal
- Surgeon completes the case
- Average pedicle division to ice time in the 5-<u>10 minute range</u>

Conclusions

- Robotic surgery is here!
- Modification needed to meet challenge of delayed "extraction"
- Unique opportunity to reduce heterogeneity of surgically induced pre-analytic determinates by codifying surgical behavior

Acknowledgments

- National Cancer
 Institute
- Department of Defense
- Koch Center for Applied Science of Genitourinary Cancer
- Prostate Cancer Foundation

- Urology:
- John Davis, MD Louis Pisters, MD Curtis Pettaway, MD
- Medical Oncology:

Jeri Kim, MD Eleni Efstathiou, MD PhD Randall Millikan, MD PhD Nora Navone, MD PhD

Molecular Pathology:

Sue Hwa Lin, PhD

• Systems Biology:

Gordon Mills, MD PhD Dimitra Tsavachidou, MD PhD

• Pathology: Patricia Troncoso, MD

- M. D. Anderson Prostate Cancer Research
- M.D. Anderson Prostate Cancer SPORE
Testing Title Design

Testing text design

Shared Signaling Pathways Implicated in the Tumor Microenvironment of High Risk Prostate Cancer & Bone.

Top 1077 genes (bone vs others, FDR=.0001) by mixed model

Top 1077 genes (bone vs others FDR=.0001) by mixed model

200 genes with smallest SD within bones among 1077 genes

Top 262 genes (stroma vs ep FDR= 0.01) by mixed model

The 'high risk' preoperative model

The experimental platform to test hypotheses on effects of compounds on the tumor microenvironment after limited exposure in a clinically meaningful context.

Efstathiou E, 2008

Material /Methods for tissue interrogation

Materials

RPS of patients treated with the compound of interest and matched controls

(by preop characteristics, ie. clinical stage, biopsy GS, PSA etc)

• Methods

- TMAS (extensive representation of heterogeneity, epithelium, stroma, non-tumor, tumor)
- RPPAs by isolation of tumor microenvironment components (LCM /UV cut technologies)

(Controls for TMAs and RPPAs of different origin)

Initial Modulation of the Tumor Microenvironment Accounts for Thalidomide Activity in Prostate Cancer

(Efstathiou et al, CCR 2007 ;13(4):1224-31)

- First clinical evidence to support the hypothesis that the reported thalidomide clinical efficacy is attributable to early modulation of the tumor microenvironment
- ✓ Antiangiogenic effect
 - CD31 reduction
 - VEGF,IL6 reduction
- ✓ Unlinking of broader stromal-epithelial interactions
 - Attenuation of hedgehog signaling
 - MMP9+MMP2/ E cadherin changed to favor e-cadherin

Coordinated Modulation of Sonic Hedgehog and Androgen Signaling in the Prostate Cancer Microenvironment by Chemo-Hormonal Therapy.

(ASCO, Chicago 2007 abstr 5066, Prostate Poster discussion)

- Results:
- Following androgen ablation (alone or in combination with chemotherapy) there is an increase in hedgehog signaling activity in the residual tumor epithelium and stroma
- Active hedgehog signaling was parallel in the tumor epithelium and adjacent stroma

Conclusion

Sonic Hedgehog and androgen pathways are modulated in a manner that suggests they behave in a compensatory fashion, and are determinants of therapy response.

Mixed Model effects comparison	Mean control (sd)	Mean AA (sd)	Mean CH (sd)	P value Control vs AA	P value Control vs CH
Gli2 Epithelium	39.6 (20.7)	79.6 (17.2)	85.5 (11.9)	<0.0001	<0.0001
Gli2 Stroma	22.9 (15.2)	43.3 (17.9)	54.7 (15.4)	<0.0001	<0.0001
Smoothened Epithelium	68.9 (18.2)	81.1 (14.2)	83.5 (8.9)	0.0047	0.0008
Smoothened Stroma	16.1 (11.2)	21.6 (10.7)	28.2 (13.9)	0.118	0.0011
Shh Epithelium	49.9 (24.8)	61.3 (19.2)	62.6 (22.4)	0.085	0.05
Shh Stroma	4.6 (6.5)	12.8 (13.5)	19.4 (13.9)	0.0203	0.0001

Pearson's correlation	Gli2. Epithelium	Gli2 Stroma	Smoothened Epithelium	Smoothened Stroma	Shh Epithelium	Shh Stroma
Gli2. Epithelium	1	0.789	0.516	0.359	0.349	0.545
Gli2 Stroma	0.789	1	0.443	0.601	0.305	0.731
Smoothened Epithelium	0.516	0.443	1	0.449	0.496	0.359
Smoothened Stroma	0.359	0.601	0.449	1	0.172	0.552
Shh Epithelium	0.349	0.305	0.496	0.172	1	0.333
Shh Stroma	0.545	0.731	0.352	0.552	0.333	1

Tumor Microenvironment

Efstathiou E, 2008

Treatment Strategy

Efstathiou E, 2008
Thalidomide Trial

at the second	4 9400 BB00
6966	000000 000000
690966	0000 C
0 0	406035 08000n
69 66	0000 00
966666	000000 000000
00000	#1 00 000 000 00 00 00 00 00 00 00 00 00
	000008 890000
0000000	
0.00000	acture 310000
000000	600000 000000
00900-0	343000
005526	000000 0000000
100000	000000 000000
100000	
200000	
000000	000000 000000
000309	2252339
\$000000	000000
69900	000500 00000
9999999	
	000000 0000000
000000	0.000000 400000
93600	
0,0000	066038 000000
00000	0 000

Control (15 RPS) .523 cores

20.000	064800	6010
040070	000003	0000
000000		
999990	000-00	640464
0 10	000000	99.00
000-00	0000	000000
6000	0000000	0000
0 00 000	000000	000000
0.000	00000)	
000	0009	
656666	00300	409400
	() = 3 + 6 ×	
000400	stravim w.m.	
0066800	0900060	9999999
003000		
0031000	000000	000000
9850	01.000	

Treated (15 RPS) .453 cores

Differentially Expressed Markers

Tumor Microenvironment

Tumor Microenvironment

Effect on S-E interaction

Comparison of marker grouping in treated and controls

Markers of Angiogenesis

Tumor Microenvironment

Tumor Proliferation and Apoptosis treated vs control

Conclusions

- Markers of shh signaling and vasculogenesis are reduced in treated as compared to control specimens
- MMP-9/E-Cadherin ratio favors Ecadherin in treated specimens
- No significant change was seen in epithelial markers (Proliferation & Apoptosis)

S-E Interaction

	Control Mean (s.d)	Treated Mean (s.d)	p value (t-test)	p value (mixed model)
Gli2	2.11	1.20	<.0001	<.0001
Smoh	(.3) 2.84 (.19)	(.3) 2.33 (.46)	.0005	.0005
Shh	2.1 (.53)	2.3 (.54)	.7702	.7782
MMP9	1.86 (.74)	.208 (.2)	<.0001	<.0001
E-Cadherin	2.6 (.15)	2.85 (.18)	. 002 <i>P</i> <u><</u> .003 f	.004 or significance

Markers of Angiogenesis

	Control Mean (s.d)	Treated Mean (s.d)	p value (t-test)	p value (mixed model)
VEGF	2.24 (.58)	1.63 (.56)	.007	.004
VEGF stroma	. 76 (.34)	.34 (.18)	<.0001	<.0001
IL6	1.68 (.5)	1.23 (.62)	.04	.04
IL6 stroma	1.53 (.4)	1.41 (.49)	.46	.27
PDGF-a	2.7 (.23)	2.59 (.41)	.31	.24
IL8	. 49 (.50)	1.26 (.62)	.0009	.0008
bFGF	1.55 (.61)	2.55 (.33)	<.0001	<.0001

 $P \leq .003$ for significance

Phenotypic Effect Modulation of Microvessel Density

Hypothesis

The biologic activity of finasteride may promote identification of molecular events that precede morphologic changes.

Secondary End Point

Kim J, 2008

Laser Capture Microdissection Oligonucleotide Microarrays

Pathol, 2001; JCO, 2002

Primary End Point

Kim J, 2008

Pathologic Evaluation Challenges

- Tumors multifocal
- Tumors multizonal
- Tumor foci of different Gleason score and pathologic stage

Kim J, 2008

Pathologic Evaluation Challenges

- Tumors multifocal
- Tumors multizonal
- Tumor foci of different Gleason score and pathologic stage

Pathologic Evaluation Challenges

- Tumors multifocal
- Tumors multizonal
- Tumor foci of different Gleason score and
 pathologic stage

Kim J, 2008

PREOPERATIVE SELENIUM AND VITAMINE E

The University of Texas M. D. Anderson Cancer Center

Eligibility

- Clinical T1c/T2
- ◆ GS <u><</u> 7
- ◆ PSA < 10</p>
- Scheduled prostatectomy 3 6 wks from study entry
- Life expectancy <a>> 10 years
- ◆ PS 0,1
- In 1 mo. before study entry cumulative dose
 - ≻selenium < 150 µg</p>
 - vitamin E < 900 IU</p>

Summary

- Ex vivo core biopsies are a source of tissue for LCM and gene expression arrays
- The Pre-operative strategy can serve as investigational platform in *low volume cancer*
- Genes in the oxidative stress response and apoptosis pathways are differentially modulated by selenium, vitamin E, or selenium + vitamin E by cell compartment
- Link to biology will validate findings

Study Schema

Kim J, 2008

Response to Oxidative Stress Is Complex and Includes Changes in Gene Expression

Study Schema

Kim J, 2008

Discriminating Molecular Signature

Table R3. Logistic analysis with response variable (Gleason score) and independent variables (molecular marker expressions) represented by involvement									
					UNIVARIABLE		MULTIVARIABLE		
		INVOLVEMENT			ANA	LYSIS	MODEL ²		
MOLECULAR				1	ODDS				
MARKER	GS ¹	0,1,2	3	TOTAL	RATIO	P VALUE	ODDS RATIO	P VALUE	
Bax	6	6 (40%)	9 (60%)	15	6	.179			
	7	1 (10%)	9 (90%)	10					
	Total	7	18	25					
Bcl-2	6	15 (100%)	0 (0%)	15					
	7	9 (90%)	1 (10%)	10					
	Total	24	1	30					
Bcl-XL	6	0 (0%)	15 (100%)	15					
	7	0 (0%)	10 (100%)	10					
	Total	0	25	25					
Bin1	6	9 (60%)	6 (40%)	15	6	.099			
	7	2 (20%)	8 (80%)	10					
	Total	11	14	25					
FAS	6	14 (93.3%)	1 (6.7%)	15	21	.007	16.14	.028	
	7	4 (40%)	6 (60%)	10					
	Total	18	7	25					
MDM2	6	11 (73%)	4 (27%)	15	6.4	.049	4.46	.155	
	7	3 (30%)	7 (70%)	10					
	Total	14	11	25					
p21	6	6 (40%)	9 (60%)	15	6	.179			
	7	1 (10%)	9 (90%)	10					
	Total	7	18	25					
p53	6	15 (100%)	0 (0%)	15	3.2*	.4			
	7	9 (90%)	1 (10%)	10					
	Total	24	1	25					
p65	6	9 (60%)	6 (40%)	15	13.5	.018			
	7	1 (10%)	9 (90%)	10					
	Total	10	15	25					
p27	6	7 (50%)	7 (50%)	14	2.3	.327			
	7	3 (30%)	7 (70%)	10			1		
	Total	10	14	24					

¹ GS is the response variable, and molecular marker expressions, represented by involvement, are predictors in the logistic model.

² GS is the response variable and the involvement measurements for FAS and MDM2 are predictors.

Discriminating Molecular Signature—Continued

Table R4. Logistic analysis (GEE approach) based on the three highest values of molecular marker involvement for each patient using the GENMOD procedure in SAS

					UNIVARIABLE MODEL		MULTIVARIABLE MODEL		
MOLECULAR		INVOLVEMENT			BY GE	BY GEE ¹		BY GEE ¹	
MAKRER	GS ¹	0,1,2	3	TOTAL	CHI-SQUARE	P VALUE	CHI-SQUARE	P VALUE	
Bax	6	21 (47%)	24 (53%)	45	2.55	.11			
	7	5 (17%)	25 (83%)	30					
	Total	26	49	75					
Bcl-2	6	45 (100%)	0 (0%)	45	not converged	N/A			
	7	27 (90%)	3 (10%)	30					
	Total	72	3	75					
Bcl-XL	6	1 (2.2%)	44 (97.8%)	45	not converged	N/A			
	7	0 (0%)	30 (100%)	30					
	Total	1	74	75					
Bin1	6	31 (68.9%)	14 (31.1%)	45	3.81	.051			
	7	9 (30%)	21 (70%)	30					
	Total	40	35	75					
FAS	6	43 (95.6%)	2 (4.4%)	45	5.53	.019	2.98	.084	
	7	17 (56.7%)	13 (43.3%)	30					
	Total	60	15	75					
MDM2	6	33 (73%)	12 (27%)	45	1.31	.2523			
	7	15 (50%)	15 (50%)	30					
	Total	48	27	75					
p21	6	20 (44.4%)	25 (55.6%)	45	3.73	.053			
	7	4 (13.3%)	26 (86.7%)	30					
	Total	24	51	75					
p53	6	45 (100%)	0 (0%)	45	not converged	N/A			
	7	27 (90%)	3 (10%)	30					
	Total	72	3	75					
p65	6	32 (71%)	13 (29%)	45	6.17	.013	3.53	.06	
	7	7 (23.3%)	23 (66.7%)	30					
	Total	39	36	75					
p27	6	21 (56.8%)	16 (43.2%)	37	1.13	.287			
1	7	11 (36.7%)	19 (63.3%)	30					
	Total	32	35	67					

¹ Gleason score (GS) is response variable, and molecular marker involvement is predictor in the logistic model.

Discriminating Molecular Signature—Continued

Table R5. Logistic analysis (GEE approach) based on three random values of involvement for each patient using the GENMOD procedure in SAS

					UNIVARIABL	UNIVARIABLE MODEL		MULTIVARIABLE MODEL	
MOLECULAR	MOLECULAR		INVOLVEMENT		BY GEE ¹		BY GEE ¹		
MARKER	GS ¹	0,1,2	3	TOTAL	CHI-SQUARE	P VALUE	CHI-SQUARE	P VALUE	
Bax	6	21 (47%)	24 (53%)	45	.17	.676			
	7	10 (33%)	25 (67%)	30					
	Total	31	44	75					
Bcl-2	6	45 (100%)	0 (0%)	45	Not converged	N/A			
	7	27 (90%)	3 (10%)	30					
	Total	72	3	75					
Bcl-XL	6	1 (2.2%)	44 (97.8%)	45	Not converged	N/A			
	7	0 (0%)	30 (100%)	30					
	Total	1	74	75					
Bin1	6	31 (68.9%)	14 (31.1%)	45	2.56	.109			
	7	12 (40%)	18 (60%)	30					
	Total	43	32	75					
FAS	6	43 (95.6%)	2 (4.4%)	45	4.95	.026	3.29	.07	
	7	20 (66.7%)	10 (33.3%)	30					
	Total	63	12	75					
MDM2	6	33 (73%)	12 (27%)	45	1.29	.255			
	7	19 (63%)	11 (37%)	30					
	Total	52	23	75					
p21	6	20 (44.4%)	25 (55.6%)	45	.08	.774			
	7	12 (13.3%)	18 (86.7%)	30					
	Total	32	43	75					
p53	6	45 (100%)	0 (0%)	45	Not converged	N/A			
	7	28 (90%)	2 (10%)	30					
	Total	73	2	75					
p65	6	32 (71%)	13 (29%)	45	2.09	.148	1.1	.294	
	7	16 (53%)	14 (47%)	30					
	Total	48	27	75					

¹ Gleason score (GS) is the response variable, and molecular marker involvement is the predictor in the logistic model.

Eligibility Inclusion Criteria

- Clinical T1c/T2, GS \leq 7, and PSA < 10
- Scheduled prostatectomy 4–6 weeks from study entry
- Life expectancy > 10 years
- Performance status < 2 (ECOG scale)</p>

Eligibility Inclusion Criteria—Continued

- Agrees not to take DHEA, phytoestrogen supplements, antiandrogen agents, dutasteride, or finasteride while on study, independent of pill provided by MDACC
- Agrees to have tissue blocks of the prostatectomy specimen used for molecular marker studies
- Is scheduled for prostatectomy
- Agrees to use adequate contraception prior to study entry and for the duration of study participation
- Signs an informed consent

Eligibility Exclusion Criteria

- Active malignancy at any other site
- Prior radiation therapy for treatment of the primary tumor
- Participation in another investigational study within one month before enrollment
- History of allergic reactions attributed to compounds similar to finasteride in chemical or biological composition
Eligibility Exclusion Criteria—Continued

- Uncontrolled intercurrent illness
- Use of <u>any anticoagulation agents except</u> daily aspirin (<u>81–325</u> mg)
- Use of all hormonal agents, including dutasteride and finasteride, within 6 months of study entry
- Use of chemotherapy within 6 months of study entry

Study Schema—Continued

*VALIDATION (AFTER THE FIRST 52 PATIENTS [26 IN EACH TREATMENT ARM]) **INTERIM ANALYSIS (AFTER THE FIRST 100 PATIENTS [50 IN EACH TREATMENT ARM])

3D plot of the relative expression of MMP2, MMP9 and e-cadherin the plane is determined by discriminant analysis R = Ecad/(3MMP9 +MMP2)

Efstathiou E, 2008

Prostate Cancer Prevention Trial

	0	0	10	00	27	27	50
Finasteride group							
Biopsy rate (%)	3.3	2.0	2.1	2.5	2.1	2.2	7.0
Total no. of cancers diagnosed	42	35	39	68	78	51	122
No. of grade 7-10 cancers	11	11	17	31	28	26	64

Thompson et al., 2003

Figures From Manuscript

Slide 1 = Connectivity networks including p53. Interconnections of <u>differentially expressed genes</u> found uniquely in selenium or vitamin E treatments, and in common with combination treatment are shown. Networks that contain p53 are included in this figure. Red refers to up-regulation and green to downregulation with respect to placebo Slide 2 = Validation of 21 genes with quantitative PCR

<u>Coordinated Modulation of Sonic Hedgehog</u> and <u>Androgen Signaling in the Prostate Cancer</u> <u>Microenvironment by Chemo-Hormonal Therapy.</u>

E.Efstathiou¹, P. Troncoso², S Wen³, KA Do³, C.A. Pettaway⁴, and C.J. Logothetis¹ Department of Genitourinary Medical Oncology¹, Pathology², Biostatistics³ and Urology⁴ University of Texas MD Anderson Cancer Center, Houston, Texas.

Background

Sonic hedgehog (Shh) and androgen signaling are implicated experimentally in prostate development, regeneration and neoplastic progression.

We assessed expression of components of these pathways in preoperatively treated and control high risk prostate cancers (PCa) in a hypothesis generating search for an association with resistance to therapy.

Methods I

Sixty-Four men with high risk PCa were randomized to receive either complete androgen ablation (AA) or AA and Ketoconazole, Adriamycin, Vinblastine and Estramustine (KAVE) for 16 weeks followed by radical prostatectomy (RP).

We constructed 3 Tissue Microarrays from RP specimens of:

- a) 26 patients pretreated with AA,
- b) 27 patients pretreated with AA + KAVE (CH)
- c) 26 untreated patients (Control)
- Patients were matched for clinical stage, biopsy Gleason Score and PSA at diagnosis.

Preoperativ Characteris	/e tics	Control	Hormonally ablated	Chemo- hormonally treated
Clinical	T2a	9	8	7
Stage at	T2b	14	17	14
diagnosis	Т3	3	1	6
Biopsy	7	10	9	10
Gleason Score (GS)	At least 1 biopsy GS <u>></u> 8	16	17	17
Median P	SA (ng/dl)	8	8	11
(Rar	nge)	(2.2-38.6)	(2.2-130.8)	(0.7-205)
PSA>10ng/dl		10	10	12
PSA<1	0ng/dl	16	16	15

Table 1: Clinical characteristics used to match RPS across groups for TMA construction

Methods II

A total of 3178 cores were obtained [median cores: 36 (range 18-90), median blocks: 5 (range 3-9) per specimen].

Immunohistochemical expression of Shh pathway components (Shh ligand, smoothened and gli2) and Androgen Receptor (AR) were assessed in the tumor epithelium and stroma.

Scoring for involvement (percentage of cells exhibiting detectable staining of the marker of interest) was performed by a 11- point system:
0:0-1%, 10: 2-10%, 20: 11-20%, 30: 21-30%, 40: 31-40%, 50: 41-50%, 60: 51-60%, 70: 61-70%, 80:71-80%, 90:81-90%, 100: 91-100%.

Statistics: A mixed-effects model was used for fitting the correlated data with regard to involvement (multiple observations from a subject), and the between and within variations were estimated from the model. Pearson's correlations between biomarkers were calculated based on mean expression.

Results (I)

• Hedgehog signaling in the residual tumor epithelium and adjacent stroma of samples treated with androgen ablation or the combination of AA with chemotherapy was higher than in controls.

This was indicated by the difference in :

- a. the mean nuclear expression of the transcription factor gli2, considered the main downstream effector of human hedgehog signaling,
- b. the expression of the hedgehog signaling intermediate smoothened, considered the limiting factor of shh pathway activation in PCa and
- c. the ligand Sonic Hedgehog.

	Mean control (sd)	Mean AA (sd)	Mean CH (sd)	P value Control vs AA	P value Control vs CH
Gli2 Epithelium	39.6	79.6	85.5	<0.0001	<0.0001
	(20.7)	(17.2)	(11.9)		
Gli2 Stroma	22.9	43.3	54.7	<0.0001	<0.0001
	(15.2)	(17.9)	(15.4)		
Smoothened	68.9	81.1	83.5	0.0047	0.0008
Epithelium	(18.2)	(14.2)	(8.9)		
Smoothened	16.1	21.6	28.2	0.118	0.0011
Stroma	(11.2)	(10.7)	(13.9)		
Shh Epithelium	49.9	61.3	62.6	0.085	0.05
	(24.8)	(19.2)	(22.4)		
Shh Stroma	4.6	12.8	19.4	0.0203	0.0001
	(6.5)	(13.5)	(13.9)		

Gli2

Sonic Hedgehog

Figure 1: Hedgehog Signaling in Control-Untreated tumors. Representative images of 3 different untreated tumors. Active hedgehog signaling is heterogeneous and limited compared to that of treated tumors (figure 2,3) as illustrated by the expression of Gli2 and smoothened.

Smoothened

Sonic Hedgehog

Figure 2: Increased Hedgehog Signaling in Residual tumors following androgen ablation. Representative images of 3 different radical prostatectomy specimens with varied extent of residual tumor. Expression of all components of hedgehog signaling assessed (Gli2, Smoothened and Sonic hedgehog) is higher than in untreated controls (Figure 1) Hedgehog signaling is active both in the residual tumor epithelium and stroma as indicated by the nuclear expression of the transcription factor gli2.

Gli2

Smoothened

Sonic Hedgehog

Figure 3: Increased Hedgehog Signaling in Residual tumor following androgen ablation and chemotherapy (KAVE)

Results (II)

• Active hedgehog signaling was parallel in the tumor epithelium and adjacent stroma as indicated by mean nuclear expression of gli2 (0.78 by Pearson's correlation)

	Gli2. Epithelium	Gli2 Stroma	Smoothened Epithelium	Smoothened Stroma	Shh Epithelium	Shh Stroma
Gli2. Epithelium	1	0.789	0.516	0.359	0.349	0.545
Gli2 Stroma	0.789	1	0.443	0.601	0.305	0.731
Smoothened Epithelium	0.516	0.443	1	0.449	0.496	0.359
Smoothened Stroma	0.359	0.601	0.449	1	0.172	0.552
Shh Epithelium	0.349	0.305	0.496	0.172	1	0.333
Shh Stroma	0.545	0.731	0.352	0.552	0.333	1

Figure 4: Androgen Receptor expression. There was a trend for lower androgen receptor expression in the tumor epithelium following AA (middle panel) and CH (right panel) for 16 weeks versus untreated control tumors (left panel). Interestingly when this occurred, adjacent stroma exhibited an increase in AR expression (arrows).

	Mean control (sd)	Mean AA (sd)	Mean CH (sd)	P value Control vs AA	P value Control vs CH
AR Epithelium	59.4	47.4	47.8	0.077	0.087
	(24.2)	(22.2)	(21.1)		
AR Stroma	6.7	8.6	10.1	0.522	0.253
	(11.6)	(10.2)	(8.2)		

Conclusions

 Sonic Hedgehog and androgen pathways are modulated in a manner that suggests they behave in a compensatory fashion, and are determinants of therapy response. These data support the hypothesis that the tumor microenvironment is implicated in PCa therapy resistance.

Kim J, 2008

Selenium Treated Non-neoplastic Epithelium Network Analysis

Selenium Treated Non-neoplastic Epithelium Network Analysis

Selenium Treated Non-neoplastic Epithelium Network Analysis

Discriminating Molecular Signature

Table R3. Logistic analysis with response variable (Gleason score) and independent variables (molecular marker expressions) represented by involvement									
		•			UNIVARIABLE		MULTIVA	RIABLE	
		INVOLVE	EMENT		ANA	LYSIS	MOD	EL ²	
MOLECULAR				1	ODDS				
MARKER	GS ¹	0,1,2	3	TOTAL	RATIO	P VALUE	ODDS RATIO	P VALUE	
Bax	6	6 (40%)	9 (60%)	15	6	.179			
	7	1 (10%)	9 (90%)	10					
	Total	7	18	25					
Bcl-2	6	15 (100%)	0 (0%)	15					
	7	9 (90%)	1 (10%)	10					
	Total	24	1	30					
Bcl-XL	6	0 (0%)	15 (100%)	15					
	7	0 (0%)	10 (100%)	10					
	Total	0	25	25					
Bin1	6	9 (60%)	6 (40%)	15	6	.099			
	7	2 (20%)	8 (80%)	10					
	Total	11	14	25					
FAS	6	14 (93.3%)	1 (6.7%)	15	21	.007	16.14	.028	
	7	4 (40%)	6 (60%)	10					
	Total	18	7	25					
MDM2	6	11 (73%)	4 (27%)	15	6.4	.049	4.46	.155	
	7	3 (30%)	7 (70%)	10					
	Total	14	11	25					
p21	6	6 (40%)	9 (60%)	15	6	.179			
	7	1 (10%)	9 (90%)	10					
	Total	7	18	25					
p53	6	15 (100%)	0 (0%)	15	3.2*	.4			
	7	9 (90%)	1 (10%)	10					
	Total	24	1	25					
p65	6	9 (60%)	6 (40%)	15	13.5	.018			
	7	1 (10%)	9 (90%)	10					
	Total	10	15	25					
p27	6	7 (50%)	7 (50%)	14	2.3	.327			
-	7	3 (30%)	7 (70%)	10			i i		
	Total	10	14	24					

¹ GS is the response variable, and molecular marker expressions, represented by involvement, are predictors in the logistic model.

² GS is the response variable and the involvement measurements for FAS and MDM2 are predictors.

Discriminating Molecular Signature—Continued

Table R4. Logistic analysis (GEE approach) based on the three highest values of molecular marker involvement for each patient using the GENMOD procedure in SAS

					UNIVARIABLE MODEL		MULTIVARIABLE MODEL	
MOLECULAR		INVOLV	/EMENT		BY GE	E^1	BY GE	E^1
MAKRER	GS ¹	0,1,2	3	TOTAL	CHI-SQUARE	P VALUE	CHI-SQUARE	P VALUE
Bax	6	21 (47%)	24 (53%)	45	2.55	.11		
	7	5 (17%)	25 (83%)	30				
	Total	26	49	75				
Bcl-2	6	45 (100%)	0 (0%)	45	not converged	N/A		
	7	27 (90%)	3 (10%)	30				
	Total	72	3	75				
Bcl-XL	6	1 (2.2%)	44 (97.8%)	45	not converged	N/A		
	7	0 (0%)	30 (100%)	30				
	Total	1	74	75				
Bin1	6	31 (68.9%)	14 (31.1%)	45	3.81	.051		
	7	9 (30%)	21 (70%)	30				
	Total	40	35	75				
FAS	6	43 (95.6%)	2 (4.4%)	45	5.53	.019	2.98	.084
	7	17 (56.7%)	13 (43.3%)	30				
	Total	60	15	75				
MDM2	6	33 (73%)	12 (27%)	45	1.31	.2523		
	7	15 (50%)	15 (50%)	30				
	Total	48	27	75				
p21	6	20 (44.4%)	25 (55.6%)	45	3.73	.053		
	7	4 (13.3%)	26 (86.7%)	30				
	Total	24	51	75				
p53	6	45 (100%)	0 (0%)	45	not converged	N/A		
	7	27 (90%)	3 (10%)	30				
	Total	72	3	75				
p65	6	32 (71%)	13 (29%)	45	6.17	.013	3.53	.06
	7	7 (23.3%)	23 (66.7%)	30				
	Total	39	36	75				
p27	6	21 (56.8%)	16 (43.2%)	37	1.13	.287		
1	7	11 (36.7%)	19 (63.3%)	30				
	Total	32	35	67				

¹ Gleason score (GS) is response variable, and molecular marker involvement is predictor in the logistic model.

Discriminating Molecular Signature—Continued

Table R5. Logistic analysis (GEE approach) based on three random values of involvement for each patient using the GENMOD procedure in SAS

					UNIVARIABLE MODEL		MULTIVARIABLE MODEL	
MOLECULAR		INVOLV	EMENT		BY GE	E	BY GE	E
MARKER	GS ¹	0,1,2	3	TOTAL	CHI-SQUARE	P VALUE	CHI-SQUARE	P VALUE
Bax	6	21 (47%)	24 (53%)	45	.17	.676		
	7	10 (33%)	25 (67%)	30				
	Total	31	44	75				
Bcl-2	6	45 (100%)	0 (0%)	45	Not converged	N/A		
	7	27 (90%)	3 (10%)	30				
	Total	72	3	75				
Bcl-XL	6	1 (2.2%)	44 (97.8%)	45	Not converged	N/A		
	7	0 (0%)	30 (100%)	30				
	Total	1	74	75				
Bin1	6	31 (68.9%)	14 (31.1%)	45	2.56	.109		
	7	12 (40%)	18 (60%)	30				
	Total	43	32	75				
FAS	6	43 (95.6%)	2 (4.4%)	45	4.95	.026	3.29	.07
	7	20 (66.7%)	10 (33.3%)	30				
	Total	63	12	75				
MDM2	6	33 (73%)	12 (27%)	45	1.29	.255		
	7	19 (63%)	11 (37%)	30				
	Total	52	23	75				
p21	6	20 (44.4%)	25 (55.6%)	45	.08	.774		
	7	12 (13.3%)	18 (86.7%)	30				
	Total	32	43	75				
p53	6	45 (100%)	0 (0%)	45	Not converged	N/A		
	7	28 (90%)	2 (10%)	30				
	Total	73	2	75				
p65	6	32 (71%)	13 (29%)	45	2.09	.148	1.1	.294
	7	16 (53%)	14 (47%)	30				
	Total	48	27	75				

¹ Gleason score (GS) is the response variable, and molecular marker involvement is the predictor in the logistic model.

Study Schema—Continued

*VALIDATION (AFTER THE FIRST 52 PATIENTS [26 IN EACH TREATMENT ARM]) **INTERIM ANALYSIS (AFTER THE FIRST 100 PATIENTS [50 IN EACH TREATMENT ARM])

3D plot of the relative expression of MMP2, MMP9 and e-cadherin the plane is determined by discriminant analysis R = Ecad/(3MMP9 +MMP2)

Efstathiou E, 2008

RESULTS

Prostate Cancer Prevention Trial

	0	0	10	00	27	27	50
Finasteride group							
Biopsy rate (%)	3.3	2.0	2.1	2.5	2.1	2.2	7.0
Total no. of cancers diagnosed	42	35	39	68	78	51	122
No. of grade 7-10 cancers	11	11	17	31	28	26	64

Thompson et al., 2003

Methods I

Sixty-Four men with high risk PCa were randomized to receive either complete androgen ablation (AA) or AA and Ketoconazole, Adriamycin, Vinblastine and Estramustine (KAVE) for 16 weeks followed by radical prostatectomy (RP).

We constructed 3 Tissue Microarrays from RP specimens of:

- a) 26 patients pretreated with AA,
- b) 27 patients pretreated with AA + KAVE (CH)
- c) 26 untreated patients (Control)
- Patients were matched for clinical stage, biopsy Gleason Score and PSA at diagnosis.

Preoperativ Characteris	/e tics	Control	Hormonally ablated	Chemo- hormonally treated
Clinical	T2a	9	8	7
Stage at	T2b	14	17	14
diagnosis	Т3	3	1	6
Biopsy	7	10	9	10
Gleason Score (GS)	At least 1 biopsy GS <u>></u> 8	16	17	17
Median P	SA (ng/dl)	8	8	11
(Range)		(2.2-38.6)	(2.2-130.8)	(0.7-205)
PSA>10ng/dl		10	10	12
PSA<1	0ng/dl	16	16	15

Table 1: Clinical characteristics used to match RPS across groups for TMA construction
Methods II

A total of 3178 cores were obtained [median cores: 36 (range 18-90), median blocks: 5 (range 3-9) per specimen].

Immunohistochemical expression of Shh pathway components (Shh ligand, smoothened and gli2) and Androgen Receptor (AR) were assessed in the tumor epithelium and stroma.

Scoring for involvement (percentage of cells exhibiting detectable staining of the marker of interest) was performed by a 11- point system:
0:0-1%, 10: 2-10%, 20: 11-20%, 30: 21-30%, 40: 31-40%, 50: 41-50%, 60: 51-60%, 70: 61-70%, 80:71-80%, 90:81-90%, 100: 91-100%.

Statistics: A mixed-effects model was used for fitting the correlated data with regard to involvement (multiple observations from a subject), and the between and within variations were estimated from the model. Pearson's correlations between biomarkers were calculated based on mean expression.

Results (I)

• Hedgehog signaling in the residual tumor epithelium and adjacent stroma of samples treated with androgen ablation or the combination of AA with chemotherapy was higher than in controls.

This was indicated by the difference in :

- a. the mean nuclear expression of the transcription factor gli2, considered the main downstream effector of human hedgehog signaling,
- b. the expression of the hedgehog signaling intermediate smoothened, considered the limiting factor of shh pathway activation in PCa and
- c. the ligand Sonic Hedgehog.

	Mean control	Mean AA	Mean CH	P value	P value
	(sd)	(sd)	(sd)	Control	Control
				vs AA	vs CH
Gli2 Epithelium	39.6	79.6	85.5	<0.0001	<0.0001
	(20.7)	(17.2)	(11.9)		
Gli2 Stroma	22.9	43.3	54.7	<0.0001	<0.0001
	(15.2)	(17.9)	(15.4)		
Smoothened	68.9	81.1	83.5	0.0047	0.0008
Epithelium	(18.2)	(14.2)	(8.9)		
Smoothened	16.1	21.6	28.2	0.118	0.0011
Stroma	(11.2)	(10.7)	(13.9)		
Shh Epithelium	49.9	61.3	62.6	0.085	0.05
	(24.8)	(19.2)	(22.4)		
Shh Stroma	4.6	12.8	19.4	0.0203	0.0001
	(6.5)	(13.5)	(13.9)		

Gli2

Sonic Hedgehog

Figure 1: Hedgehog Signaling in Control-Untreated tumors. Representative images of 3 different untreated tumors. Active hedgehog signaling is heterogeneous and limited compared to that of treated tumors (figure 2,3) as illustrated by the expression of Gli2 and smoothened.

Smoothened

Sonic Hedgehog

Figure 2: Increased Hedgehog Signaling in Residual tumors following androgen ablation. Representative images of 3 different radical prostatectomy specimens with varied extent of residual tumor. Expression of all components of hedgehog signaling assessed (Gli2, Smoothened and Sonic hedgehog) is higher than in untreated controls (Figure 1) Hedgehog signaling is active both in the residual tumor epithelium and stroma as indicated by the nuclear expression of the transcription factor gli2.

Gli2

Smoothened

Sonic Hedgehog

Figure 3: Increased Hedgehog Signaling in Residual tumor following androgen ablation and chemotherapy (KAVE)

Results (II)

• Active hedgehog signaling was parallel in the tumor epithelium and adjacent stroma as indicated by mean nuclear expression of gli2 (0.78 by Pearson's correlation)

	Gli2. Epithelium	Gli2 Stroma	Smoothened Epithelium	Smoothened Stroma	Shh Epithelium	Shh Stroma
Gli2. Epithelium	1	0.789	0.516	0.359	0.349	0.545
Gli2 Stroma	0.789	1	0.443	0.601	0.305	0.731
Smoothened Epithelium	0.516	0.443	1	0.449	0.496	0.359
Smoothened Stroma	0.359	0.601	0.449	1	0.172	0.552
Shh Epithelium	0.349	0.305	0.496	0.172	1	0.333
Shh Stroma	0.545	0.731	0.352	0.552	0.333	1

Figure 4: Androgen Receptor expression. There was a trend for lower androgen receptor expression in the tumor epithelium following AA (middle panel) and CH (right panel) for 16 weeks versus untreated control tumors (left panel). Interestingly when this occurred, adjacent stroma exhibited an increase in AR expression (arrows).

	Mean control (sd)	Mean AA (sd)	Mean CH (sd)	P value Control vs AA	P value Control vs CH
AR Epithelium	59.4	47.4	47.8	0.077	0.087
	(24.2)	(22.2)	(21.1)		
AR Stroma	6.7	8.6	10.1	0.522	0.253
	(11.6)	(10.2)	(8.2)		

Conclusions

 Sonic Hedgehog and androgen pathways are modulated in a manner that suggests they behave in a compensatory fashion, and are determinants of therapy response. These data support the hypothesis that the tumor microenvironment is implicated in PCa therapy resistance.

Kim J, 2008

Table R3.	Logistic analysis with response variable (Gleason score) and independent
variables	(molecular marker expressions) represented by involvement

					UNIVARIABLE		MULTIVARIABLE	
		INVOLVE	EMENT		ANAI	LYSIS	MODEL ²	
MOLECULAR					ODDS			
MARKER	GS ¹	0,1,2	3	TOTAL	RATIO	P VALUE	ODDS RATIO	P VALUE
Bax	6	6 (40%)	9 (60%)	15	6	.179		
	7	1 (10%)	9 (90%)	10				
	Total	7	18	25				
Bcl-2	6	15 (100%)	0 (0%)	15				
	7	9 (90%)	1 (10%)	10				
	Total	24	1	30				
Bcl-XL	6	0 (0%)	15 (100%)	15				
	7	0 (0%)	10 (100%)	10				
	Total	0	25	25				
Bin1	6	9 (60%)	6 (40%)	15	6	.099		
	7	2 (20%)	8 (80%)	10				
	Total	11	14	25				
FAS	6	14 (93.3%)	1 (6.7%)	15	21	.007	16.14	.028
	7	4 (40%)	6 (60%)	10				
	Total	18	7	25				
MDM2	6	11 (73%)	4 (27%)	15	6.4	.049	4.46	.155
	7	3 (30%)	7 (70%)	10				
	Total	14	11	25				
p21	6	6 (40%)	9 (60%)	15	6	.179		
	7	1 (10%)	9 (90%)	10				
	Total	7	18	25				
p53	6	15 (100%)	0 (0%)	15	3.2*	.4		
	7	9 (90%)	1 (10%)	10				
	Total	24	1	25				
p65	6	9 (60%)	6 (40%)	15	13.5	.018		
	7	1 (10%)	9 (90%)	10				
	Total	10	15	25				
p27	6	7 (50%)	7 (50%)	14	2.3	.327		
	7	3 (30%)	7 (70%)	10				
	Total	10	14	24				

¹ GS is the response variable, and molecular marker expressions, represented by involvement, are predictors in the logistic model.
 ² GS is the response variable and the involvement measurements for *FAS* and *MDM2* are predictors.

Table R4. Logistic analysis (GEE approach) based on the three highest values of molecular marker involvement for each patient using the GENMOD procedure in SAS

					UNIVARIABLE MODEL		MULTIVARIABLE MODEL	
MOLECULAR		INVOLV	/EMENT		BY GE	E1	BY GEE ¹	
MAKRER	GS ¹	0,1,2	3	TOTAL	CHI-SQUARE	P VALUE	CHI-SQUARE	P VALUE
Bax	6	21 (47%)	24 (53%)	45	2.55	.11		
	7	5 (17%)	25 (83%)	30				
	Total	26	49	75				
Bcl-2	6	45 (100%)	0 (0%)	45	not converged	N/A		
	7	27 (90%)	3 (10%)	30				
	Total	72	3	75				
Bcl-XL	6	1 (2.2%)	44 (97.8%)	45	not converged	N/A		
	7	0 (0%)	30 (100%)	30				
	Total	1	74	75				
Bin1	6	31 (68.9%)	14 (31.1%)	45	3.81	.051		
	7	9 (30%)	21 (70%)	30				
	Total	40	35	75				
FAS	6	43 (95.6%)	2 (4.4%)	45	5.53	.019	2.98	.084
	7	17 (56.7%)	13 (43.3%)	30				
	Total	60	15	75				
MDM2	6	33 (73%)	12 (27%)	45	1.31	.2523		
	7	15 (50%)	15 (50%)	30				
	Total	48	27	75				
p21	6	20 (44.4%)	25 (55.6%)	45	3.73	.053		
	7	4 (13.3%)	26 (86.7%)	30				
	Total	24	51	75				
p53	6	45 (100%)	0 (0%)	45	not converged	N/A		
	7	27 (90%)	3 (10%)	30				
	Total	72	3	75				
p65	6	32 (71%)	13 (29%)	45	6.17	.013	3.53	.06
	7	7 (23.3%)	23 (66.7%)	30				
	Total	39	36	75				
p27	6	21 (56.8%)	16 (43.2%)	37	1.13	.287		
	7	11 (36.7%)	19 (63.3%)	30				
	Total	32	35	67				

¹ Gleason score (GS) is response variable, and molecular marker involvement is predictor in the logistic model.

Table R5. Logistic analysis (GEE approach) based on three random values of involvement <u>for each patient using the GENMOD procedure in SAS</u>

					UNIVARIABLE MODEL		MULTIVARIABLE MODE	
MOLECULAR		INVOLV	EMENT		BY GE	E	BY GEE	
MARKER.	GS ¹	0,1,2	3	TOTAL	CHI-SQUARE	P VALUE	CHI-SQUARE	P VALUE
Bax	6	21 (47%)	24 (53%)	45	.17	.676		
	7	10 (33%)	25 (67%)	30				
	Total	31	44	75				
Bcl-2	6	45 (100%)	0 (0%)	45	Not converged	N/A		
	7	27 (90%)	3 (10%)	30				
	Total	72	3	75				
Bcl-XL	6	1 (2.2%)	44 (97.8%)	45	Not converged	N/A		
	7	0 (0%)	30 (100%)	30				
	Total	1	74	75				
Bin1	6	31 (68.9%)	14 (31.1%)	45	2.56	.109		
	7	12 (40%)	18 (60%)	30				
	Total	43	32	75				
FAS	6	43 (95.6%)	2 (4.4%)	45	4.95	.026	3.29	.07
	7	20 (66.7%)	10 (33.3%)	30				
	Total	63	12	75				
MDM2	6	33 (73%)	12 (27%)	45	1.29	.255		
	7	19 (63%)	11 (37%)	30				
	Total	52	23	75				
p21	6	20 (44.4%)	25 (55.6%)	45	.08	.774		
	7	12 (13.3%)	18 (86.7%)	30				
Í	Total	32	43	75				
p53	6	45 (100%)	0 (0%)	45	Not converged	N/A		
	7	28 (90%)	2 (10%)	30				
	Total	73	2	75				
p65	6	32 (71%)	13 (29%)	45	2.09	.148	1.1	.294
	7	16 (53%)	14 (47%)	30				
İ	Total	48	27	75	ĺ			

¹ Gleason score (GS) is the response variable, and molecular marker involvement is the predictor in the logistic model.

*VALIDATION (AFTER THE FIRST 52 PATIENTS [26 IN EACH TREATMENT ARM]) **INTERIM ANALYSIS (AFTER THE FIRST 100 PATIENTS [50 IN EACH TREATMENT ARM])

Prostate Cancer Prevention Trial

	0	0	10	00	27	27	50
Finasteride group							
Biopsy rate (%)	3.3	2.0	2.1	2.5	2.1	2.2	7.0
Total no. of cancers diagnosed	42	35	39	68	78	51	122
No. of grade 7-10 cancers	11	11	17	31	28	26	64

Thompson et al., 2003

Methods I

Sixty-Four men with high risk PCa were randomized to receive either complete androgen ablation (AA) or AA and Ketoconazole, Adriamycin, Vinblastine and Estramustine (KAVE) for 16 weeks followed by radical prostatectomy (RP).

We constructed 3 Tissue Microarrays from RP specimens of:

- a) 26 patients pretreated with AA,
- b) 27 patients pretreated with AA + KAVE (CH)
- c) 26 untreated patients (Control)
- Patients were matched for clinical stage, biopsy Gleason Score and PSA at diagnosis.

Preoperative Characteristics		Control	Hormonally ablated	Chemo- hormonally treated	
Clinical	T2a	9	8	7	
Stage at	T2b	14	17	14	
diagnosis	Т3	3	1	6	
Biopsy Gleason Score (GS)	7	10	9	10	
	At least 1 biopsy GS <u>></u> 8	16	17	17	
Median P	SA (ng/dl)	8	8	11	
(Range)		(2.2-38.6)	(2.2-130.8)	(0.7-205)	
PSA>1	0ng/dl	10	10	12	
PSA<1	0ng/dl	16	16	15	

Table 1: Clinical characteristics used to match RPS across groups for TMA construction

Methods II

A total of 3178 cores were obtained [median cores: 36 (range 18-90), median blocks: 5 (range 3-9) per specimen].

Immunohistochemical expression of Shh pathway components (Shh ligand, smoothened and gli2) and Androgen Receptor (AR) were assessed in the tumor epithelium and stroma.

Scoring for involvement (percentage of cells exhibiting detectable staining of the marker of interest) was performed by a 11- point system:
0:0-1%, 10: 2-10%, 20: 11-20%, 30: 21-30%, 40: 31-40%, 50: 41-50%, 60: 51-60%, 70: 61-70%, 80:71-80%, 90:81-90%, 100: 91-100%.

Statistics: A mixed-effects model was used for fitting the correlated data with regard to involvement (multiple observations from a subject), and the between and within variations were estimated from the model. Pearson's correlations between biomarkers were calculated based on mean expression.

Results (I)

• Hedgehog signaling in the residual tumor epithelium and adjacent stroma of samples treated with androgen ablation or the combination of AA with chemotherapy was higher than in controls.

This was indicated by the difference in :

- a. the mean nuclear expression of the transcription factor gli2, considered the main downstream effector of human hedgehog signaling,
- b. the expression of the hedgehog signaling intermediate smoothened, considered the limiting factor of shh pathway activation in PCa and
- c. the ligand Sonic Hedgehog.

Future Directions

- Confirm findings in larger patient cohorts
- Elucidate the mechanism by which stromal epithelial interaction affects phenotype
- Determine if a mechanistic link between Androgen and Hedgehog signaling is a determinant of therapy response

Overview of Hedgehog Signaling (II)

Inactive Signaling

Active Signaling

Implications for Hedgehog – Androgen Signaling Associations in Prostate Development/Regeneration

- Shh mutant fetuses display abnormal urogenital development and fail to form prostate buds. This prostate defect can be rescued by explant culture in the presence of androgens, and administration of dihydrotestosterone (DHT) to pregnant mice
- Hh pathway blockade blocks epithelial regeneration in androgen –ablated rodent ventral prostate upon androgen supplementation

Hierarchical clustering based on all genes (n=13346)

FDR table for Bone analysis (mixed model)

Bone vs Tumor/Non-Tumor	FDR	p-value	number of genes
	0.01	0.021	7169
	0.001	0.001	3413
	0.0001	0.00006	1077
	0.00001	<0.00001	167
Eps vs stroma			
	0.05	0.012	1451
	0.01	0.0005	262
	0.001	<0.00001	14

Bone vs Tumor/NonTumor

p-value

p-value

Pre-Operative High Risk Prostate Cancer Protocols

Investigati	onal R _x	Prostatectomy	
Years	RXPX	ACCRUAL	EXPECTED
97-98	30	33	30
98-99	26	29	30
98-00	24	27	27
99-03	58	64	64
01-02	15	18	40
03-05	37	37	36
04-05	18	18	40
	208	226	267
	Investigati Years 97-98 98-99 98-00 99-03 01-02 03-05 04-05	Investigational Rx Years RXPX 97-98 30 98-99 26 98-00 24 99-03 58 01-02 15 03-05 37 04-05 18 208	Investigational Rx Prostatectomy Years RXPX ACCRUAL 97-98 30 33 98-99 26 29 98-00 24 27 99-03 58 64 01-02 15 18 03-05 37 37 04-05 18 18

* Completed

Eleni Efstathiou, Patricia Troncoso, Sijin Wen, Kim-Anh Do, Timothy J McDonnell, Christopher Logothetis

Laparoscopic Radical Prostatectomy (LRP) or Robotic-Assisted Laparoscopic Prostatectomy (RALP)

- Techniques employ multiple port access to the surgical field
- Dissection is antegrade—starts at the bladder neck, then pedicles, then urethra
- Pneumoperitoneum with 15 mmHg C02 required
- <u>Typically entire case finished</u> <u>before organ extracted to</u> <u>maintain pneumoperitoneum</u>

Tissue Ischemia and Laparoscopy: Potentially increased time compared to open

- Open RP: organ immediately available to place on ice
- Retrograde dissection starts with the urethra, then pedicles and ends with the bladder neck
- ? Differential ischemia
 > at apex than base

Davis J, 2008

Study Design

Change in PSA Levels

PSA drop > 50% = 33% Median PSA reduction at 6 weeks 38.28% Median PSA reduction at 12weeks 41.82% No effect on testosterone

Materials/Methods

- Tissue microarrays of 15 treated cancer & 15 matched controls: Median cores per case 30
- Protein expression by IHC
- Statistical Analysis: 3 methods on raw data (hierarchical clustering, standard t-test, mixed model incorporating sample variation)