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Blood is the Cornerstone of Biomarker Discovery

* Noninvasive window into disease changes
throughout the body

e Large biorepositories established for cohort and
case/control biomarker discovery studies

* Yet many biomarker discoveries fail to validate
— Study population doesn’t match final clinical indication

— Hidden preanalytic variability in the discovery samples
contaminates the apparent disease markers

1 N IO (0] SO

© 2000-2012, Somalogic, Inc. o0 (10 =0 =0 = 0o



_ o Somalogic

Blood is a Dynamic Fluid

100
[
[l

 Profound post-collection changes can occur
— Platelet activation
— Complement activation
— Cell lysis and release of intracellular proteins
— Proteolysis

 Sample processing effects can masquerade as
disease markers

* Proteomic evidence reveals this bias as a sample’s
“criminal record”
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=8 Untangling Preanalytic Bias and Biomarker Discovery

Sample mishandling causes entire pathways to change

SOMAscan assay delivers deep interrogation of the proteome
e Sensitive and precise: LOD <1pM with <5% CV
Highly multiplexed platform: >1000 analytes from 20 4L sample

High throughput: >300 samples/day

Broad coverage of cellular pathways and disease pathophysiology

Works in many biological samples (e.q., tissue, blood, urine, CSF)

Protein Analyte Protein-SOMAmer Complex SOMAmer Agilent Array
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EE Eung Cancer Case Study: Revealing Sample Bias

Biomarker Discovery Study Design
e 1,326 serum samples from 4 biorepositories with the same sample collection protocol
e Exact target population for clinical diagnostic application
— 30% NSCLC cases (half were Stage 1) & 70% High risk smoker controls
* Training set of ¥900 samples and a blinded verification set of ~¥400 samples
e Excellent performance, consistent across sites
— AUC of ~90%
— Sensitivity 89% specificity 84% :
— Performance independent of stage
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Ostroff et al. (2010) PloS ONE 5, e15003;
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ut... Top Biomarkers at Each Site are Different
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A single classifier performs well on
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But the top biomarkers at each site / |
are different
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O And... Translation Across Sites is Poor

Blinded verification would have failed if we had trained on
any one site and tested on any other

Train on Site 1 Train on Site 2
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0 So... Let’s Deconstruct Site Differences

(1): The Controls Are Different

Principal Components Analysis was used to uncover the hidden patterns in the

data
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O_ So... Let’s Deconstruct Site Differences

(1): The Controls Are Different

Samples from different sites occupy different spaces in the first 2 principal components

Individual Proteins Individual Samples
E -
[}
o o
f=] o
_—
= - =
=T o,
= =
@ @ o
] o ]
E E
o = _ @
g ° 3
S _ 3
5 * Site 1
o | * Site 2
i ® Site 3
o e o o * Site 4
§ T T ] T T T T ] T
=01 0.0 0.1 02 -5 0] 5 10 15
Component 1 (13.88 %) Component 1 (13.88 %)

© 2000-2012, Somalogic, Inc. 10 00 000 0000

[] W] . 100



_ o Somalogic

OO o
0 So... Let’s Deconstruct Site Differences

(2): Why The Controls Are Different — Biological
Causes

SOMAmer Space (loadings)
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0 So... Let’s Deconstruct Site Differences

(2): Why The Controls Are Different — Biological
Causes

SOMAmer Space (loadings)
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So... Let’s Deconstruct Site Differences

(2): Why The Controls Are Different — Biological
Causes

SOMAmer Space (loadings)
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Variability could be replicated in the lab by manipulating processing time,
temperature, centrifuge speed, or inducing platelet activation

Ostroff et al. (2010) J Proteomics. 73:649
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EE 6uantifying Site Differences: Creating a Criminal

Record for Each Sample

e From the 1000 proteins
measured we selected small
sub-panels which were purely Platelet
affected by only one type of Activation
pre-analytic effect

Single sample in
SMV space

e We created multidimensional
vectors of the effects which
are applied to each sample

Cell Lysis

h--------

 We then went back and
applied them to the lung
cancer discovery set
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0_ Quantifying Site Differences: Evaluating The
Criminal Record for Each Lung Cancer Sample
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Quantlfymg Site Differences: Evaluating The
Criminal Record for Each Lung Cancer Sample
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0_ Quantifying Site Differences: Evaluating The
Criminal Record for Each Lung Cancer Sample
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E)vercoming Site Differences: Possible Solutions

Remove Affected Analytes
® Pros: reduces risk of improper classification
® Cons: potential loss of true biomarkers

Remove Affected Samples
® Pros: removes bias from initial discovery
® Cons: loss of power, may be impractical for a product

Mathematically Correct the Effects

® Pros: keeps all samples and analytes

® Cons: requires a lot of experimentation, difficult to
validate, may not be possible for some biological effects
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1. Remove Disease Markers Susceptible to Bias

Example: HSP90 is a known marker of lung cancer and is a
therapeutic target. However, as a diagnostic, it is adversely
affected by leukocyte lysis and therefore susceptible to bias
and variability of collection.

HSP90A - PDF
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0_ Overcoming Site Differences:

2. Remove Samples From Biomarker Discovery

Platelet NSCLC SMV Projection
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We identified an unbiased, uncontaminated fraction of

samples in the lung cancer discovery set and re-did discovery
on those samples
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0 Solution: Mitigating False Discovery by Removing

Criminal Analytes and Samples

NSCLC Perdfomance Comparlson

Half the “top 12” analytes were eliminated
AUC decreased from 0.9 to 0.84
®* Now see a clear relationship between »
disease stage and performance
® Explains previous observations: Case-
control bias markers aren’t stage [ [ 7 ModelAlierEim
related! P ety

Traln & Test Across Sltes

Sensitivity
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— Original Model
— Model After Elimination

® The classifier did not lose performance if
training on one site and testing on others
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DD Respon5|ble Biomarker Discovery:

Overcoming Preanalytic Effects and Hidden Bias

 Mishandling of samples results in activation of biological
pathways and produces unintentional bias

— Leads to false discovery of apparent disease signatures

 Choose markers wisely
— Not just the best case/control discrimination
— Must be resistant to processing variability
— Increases the likelihood that a biomarker panel will translate to the clinic

e The SOMAmer-based SMV tool quantifies sample bias

e SMV analysis can be applied broadly to reveal trustworthiness
of samples before proceeding to biomarker discovery
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