Preservation, Extraction, and Analysis of Biomolecules in Complex Human Biofluids

Niels H. H. Heegaard Department of Clinical Biochemistry and Immunology Statens Serum Institut, Copenhagen, Denmark

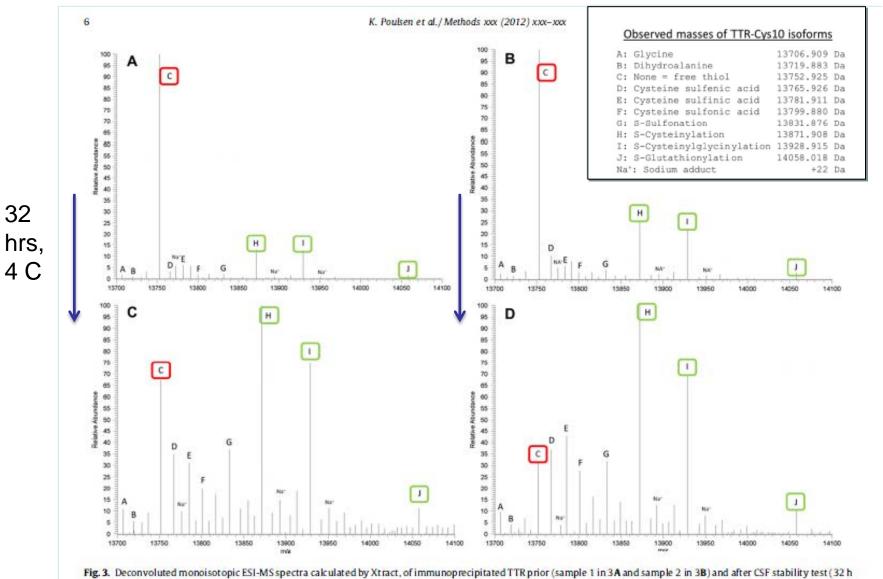
		i ja kai ja	. <mark></mark>		0.000				
)013992	0.0206398	0.7917289	mir146b
						019657	0.0206398	0.7781608	mir221
)077541	0.0542787	0.7350238	let7a
	╋╋			+++)114304	0.0600096	0.7712901	mir155
)208282	0.0874784	0.8233863	mir175p
The second s							0.0979982	1.1724179	mir29c
						1279995			
)374234	0.1122702	0.8723669	mir27a

Blood/Plasma/Serum

- Cells/plasma (45/55 vol%)
- Total protein in plasma is ≈80 g/L, 50% albumin
- micro-RNA circulates in exosomes and as micro-RNP
- >>500-5,000 different proteins, conc. range 10⁷
- ionic strength 154 mM
- pH 7.35-7.45
- Homeostatic fluid
- Reflects systemic or organ specific pathology
- Good buffering capacity

Spinal fluid (CSF)

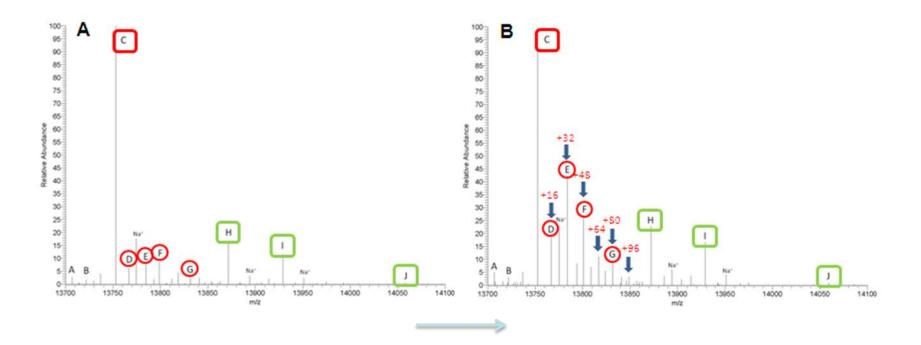
- Few cells in normal CSF (if no blood contamination)
- Plasma ultrafiltrate
- Total protein is 0.3-0.8% of plasma (0.2-0.6 g/L), 60% albumin
- micro-RNA present at very low conc.
- Heterogeneous fluid (protein concentration gradient)
- Reflects CNS pathology
- Turns over 3-4 times a day
- Low buffering capacity, pH \uparrow in samples exposed to air
- Antioxidant capacity 5x lower than plasma


<u>Urine</u>

- Few cells in normal urine
- Glomerular ultrafiltrate of plasma, normally ≈95% water
- Very low protein in normal urine, small molecules, metabolites abundant
- exosomal micro-RNA (tubular) present
- reflects kidney pathology etc.
- Variable volume & gravity, variable ioinic strength, variable pH
- i.e., non-homeostatic

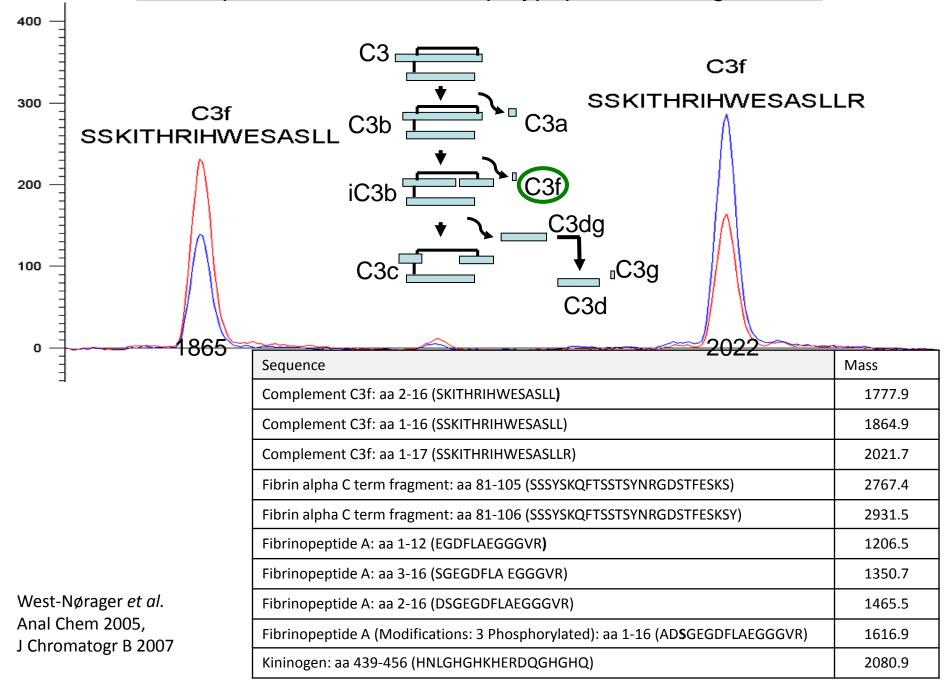
- Spinal Fluid
- Urine
- Blood
 - serum proteome
 - microparticle proteome
 - circulating micro-RNA
 - dried blood spot specimens
 - DNA extractions and WGA
 - multiplex immunoassays

CSF - Transthyretin as an oxymeter


Immunoprecipitation LC-MS of intact transthyretin from crude CSF

at 4°C, sample 1 in 3C and sample 2 in 3D).

Please cite this article in press as: K. Poulsen et al., Methods (2012), doi:10.1016/i.vmeth.2011.12.009


CSF - Transthyretin as an oxymeter

TTR dried down and kept under N₂ at RT, 4 days

- Spinal Fluid
- Urine
- Blood
 - serum proteome
 - microparticle proteome
 - circulating micro-RNA
 - dried blood spot specimens
 - DNA extractions and WGA
 - multiplex immunoassays

<u>Serum proteomics – Sentinel polypeptides for degradation</u>

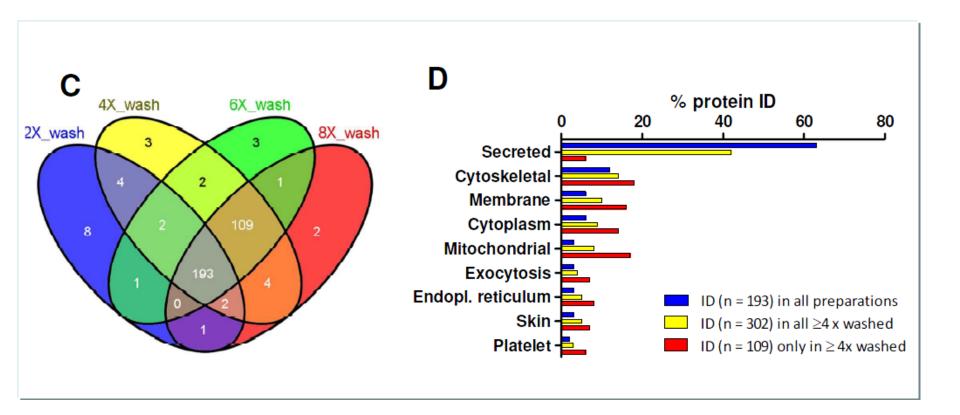
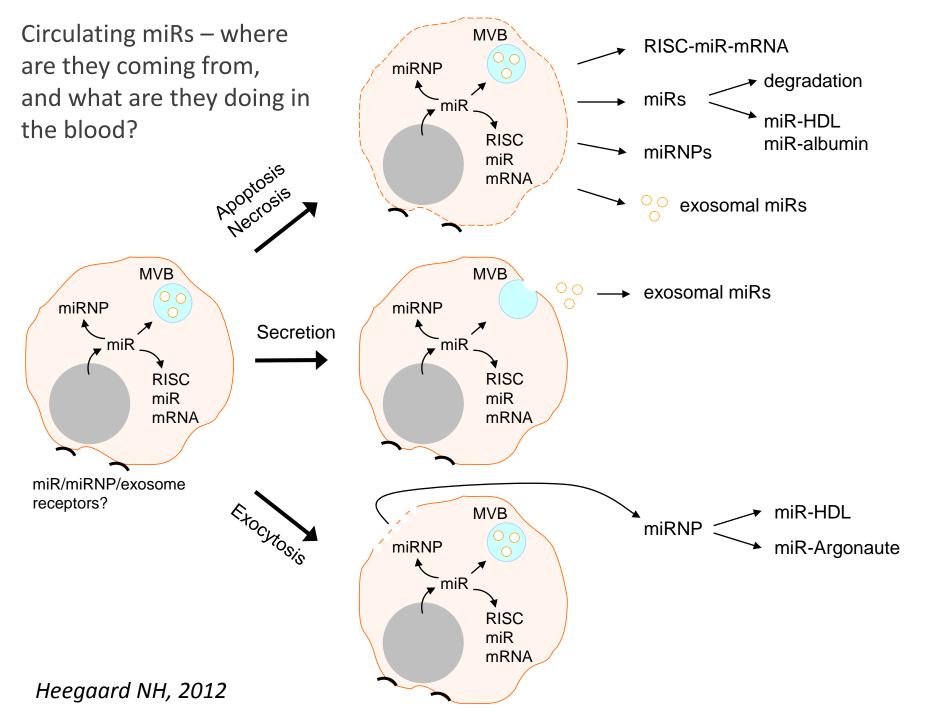
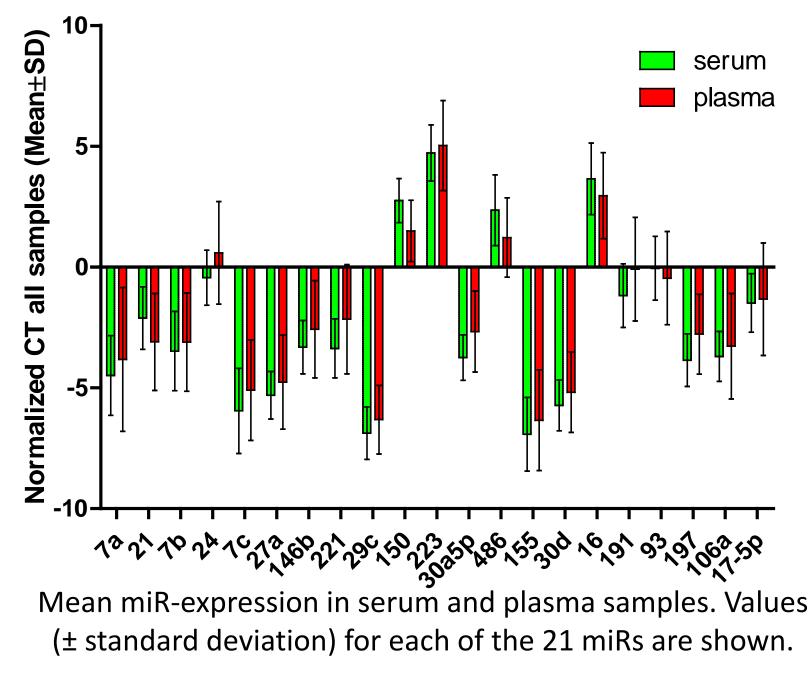
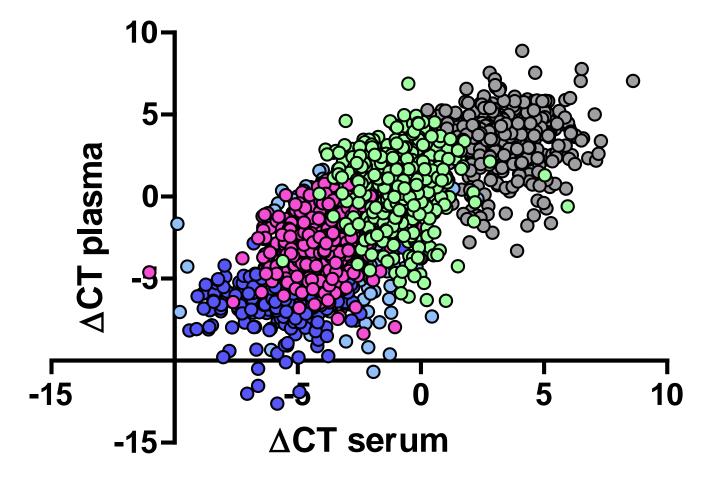


Figure 3. Long-term storage effects at -20 °C. (a) Modeling sample age using PLS (validated). Samples were collected over a period of 23 months. The samples are grouped according to the month in which the sample was taken, 09-2004 is number 23 and 07-2006 is number 1 on the abscissa. The slope is 0.78 with correlation r = 0.86. (b) The figure shows a variable with m/z 6638.41 with intensity increasing as a function of storage time. The variance between samples becomes larger with increased storage time. For other variables, e.g., at 4205.71 Da, the opposite trend was observed (not shown), i.e., diminished intensity as a function of storage time.


- Spinal Fluid
- Urine
- Blood
 - serum proteome
 - microparticle proteome
 - circulating micro-RNA
 - dried blood spot specimens
 - DNA extractions and WGA
 - multiplex immunoassays

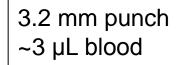

Circulating sub-proteomes Subfraction-enrichment in blood opens new avenues


Oestergaard O et al. J Proteome Res 2012 Epub ahead of print

- Spinal Fluid
- Urine
- Blood
 - serum proteome
 - microparticle proteome
 - circulating micro-RNA
 - dried blood spot specimens
 - DNA extractions and WGA
 - multiplex immunoassays

Heegaard N et al. Int J Cancer 2012; 130: 1378-86

- plasma-16
- plasma-21
- plasma-29c
- plasma-197
- plasma-24


- Spinal Fluid
- Urine
- Blood
 - serum proteome
 - microparticle proteome
 - circulating micro-RNA
 - dried blood spot specimens
 - DNA extractions and WGA
 - multiplex immunoassays

Dried blood spot specimens (DBSS) *The Danish National Birth Cohort*

- Heel blood samples from all Danish newborns since 1981-82. Annual birth cohort
 ≈ 65,000 i.e. ≈ 2 million samples in repository (-24°C)
- Whole blood. Erythrocytes, leukocytes, platelets and plasma
- Dried blood in filter paper.
 - Cells are more or less lyzed during drying
 - Analytes of interest must be extracted from the filter paper matrix
 - All biological processes are stopped immediately when the sample is dried.
- The very limited amount of sample material reduces analytical possibilities using conventional techniques

- Spinal Fluid
- Urine
- Blood
 - serum proteome
 - microparticle proteome
 - circulating micro-RNA
 - dried blood spot specimens
 - DNA extractions and WGA
 - multiplex immunoassays

Comprehensive genetic analysis on neonatal dried blood spot samples (DBSS)

- 1. Neonatal genetic screening for inherited disorders
- 2. Studies of genetic influence on complex disorders, using archived residual DBSS combined with clinical information from medical registries

SNP-analysis of material from dried blood spots. Genome scans by Illumina™ 610k chip of wgaDNA from 3.2 mm DBSS punch

BMC Genomics 2009, **10**:297 Hollegaard MV et al. http://www.biomedcentral.com/1471-2164/10/297

Table 1: Robustness of the GPlex4 and REPLI-g WGA kits.

ID Call-rate		GPlex4		REPLI-g				
	Call-rate A	Call-rate B ²	WGAout ³	Call-rate A	Call-rate B ²	WGAout ³		
1	97.74%	99.24%	4.86	99.42%	99.65 %	6.55		
2	97.41%	99.30%	4.85	99.56%	99.64%	7.22		
3	98.21%	99.42%	5.06	98.54%	99.33%	3.53		
4	97.80%	99.38%	4.93	99.14%	99.56%	3.00		
5	97.90%	99.41%	5.20	99.00%	99.51%	4.47		
6	98.04%	99.42%	4.92	99.73%	99.73%	3.74		
7	97.83%	99.38%	5.00	99.72%	99.73%	6.02		
8	97.62%	99.29%	5.01	99.49%	99.66%	6.00		
9	97.56%	99.29%	5.15	99.55%	99.64%	7.64		
10	97.30%	99.26%	5.33	95.91%	99.15%	7.86		
11	98.17%	99.32%	5.41	99.43%	99.60%	7.48		
12	98.13%	99.38%	5.49	99.38%	99.56%	1.56		
13	96.62%	99.08%	5.15	99.43%	99.60%	6.71		
14	97.55%	99.35%	5.48	99.22%	99.63%	1.40		
15	96.75%	99.17%	5.14	98.97%	99.53%	4.98		
16	96.53%	99.16%	4.13	98.49%	99.43%	2.72		
Median	97.68%	99.31%	5.10	99.40%	99.60%	5.49		
Std. Dev.	0.53%	0.10%	0.33	0.92%	0.15%	2.18		

¹Call-rate (percent) using the Illumina Human610-Quadv1B cluster file.

²Call-rate (percent) using the WGA kit custom cluster file.

³wgaDNA (µg) produced per reaction.

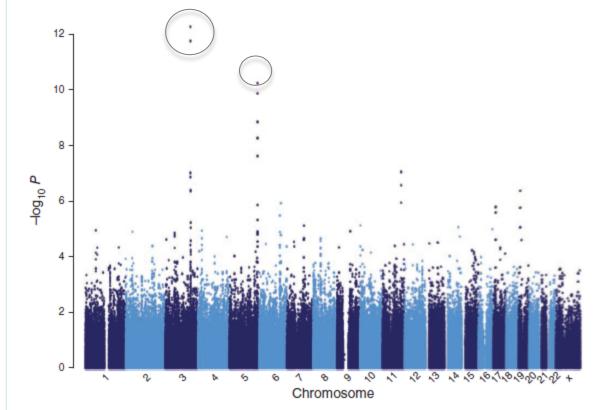
Conflict rates 0.02-0.03%

П

Robustness of SNP genotyping 610,000 genetic variants in 1806 DBSS

1806 DBSS from 1982-1990 stored in The Danish Neonatal Screening Biobank. SNP genotyping performed on wgaDNA (MDA (REPLI-g) method) using the Illumina[™] Infinium HD Human610-Quad BeadChip. Calls were made from a custom made cluster file based on 400 wgaDNA samples.

Common variants near *MBNL1* and *NKX2-5* are associated with infantile hypertrophic pyloric stenosis


Bjarke Feenstra^{1,4}, Frank Geller^{1,4}, Camilla Krogh¹, Mads V Hollegaard², Sanne Gørtz¹, Heather A Boyd¹, Jeffrey C Murray³, David M Hougaard² & Mads Melbye¹

Nature Genetics. Advance online publication 2012 http://www.nature.com/doifinder/10.1038/ng.1067

Discovery: Samples from 1,001 cases were selected and successfully genotyped. The control group consisted of 2,401 Danish children without IHPS.

Replication: Samples from 796 cases and 876 controls drawn from the same population.

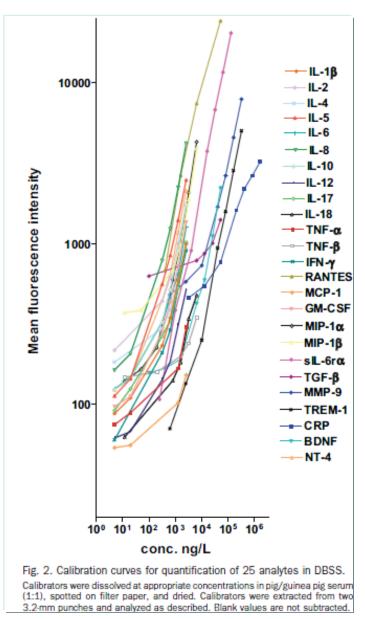

All samples were drawn from the Danish Newborn Screening Biobank and the biobank of the Danish National Birth Cohort, both of which are part of the Danish National Biobank. Sampling and genotyping (using the Illumina Human660W-Quad v1_A chip) was undertaken in two rounds. In total, genotypes for 559,390 SNPs were released in both genotyping rounds. For the association analysis, we used the data from 523,420 SNPs

Figure 1 Manhattan plot of the IHPS GWAS. The genome-wide distribution of $-\log_{10} P$ values after correction by the genomic control factor ($\lambda = 1.06$) is shown across the chromosomes.

- Spinal Fluid
- Urine
- Blood
 - serum proteome
 - microparticle proteome
 - circulating micro-RNA
 - dried blood spot specimens
 - DNA extractions and WGA
 - multiplex immunoassays

Simultaneous Measurement of 25 Inflammatory Markers and Neurotrophins in Neonatal DBSS by Immunoassay with Luminex xMAP Technology

	-		
	R	elative concentration,	%
Analytes	23 years	3 years	1 month
IL-1β	44	43	93
IL-2	116	115	113
IL-4	91	91	107
IL-5	105	116	122
IL-6	95	101	108
IL-8	28	38	64
IL-10	124	103	129
IL-12	95	108	107
IL-17	94	100	107
IL-18	138	113	129
TNF-α	92	101	109
TNF-β	88	94	93
IFN-y	117	119	121
RANTES	87	89	90
MCP-1	94	112	112
GM-CSF	102	107	108
MIP-1α	85	88	98
MIP-1β	59	76	79
SIL-6ra	48	101	113
TGF-β	111	100	95
MMP-9	57	49	93
TREM-1	68	84	129
CRP	73	123	110
BDNF	22	54	58
NT-4	54	63	111

^a Results are expressed as percentage of concentration detectable in 2-weekold DBSS not yet put into storage in the PKU-biobank. Notice that detected concentrations of some analytes are decreased after prolonged storage.

Skogstrand K et al. Clin Chem 2005; 51: 1854-66

Antigen-induced cytokine and chemokine release test for tuberculosis infection using adsorption of stimulated whole blood on filter paper and multiplex analysis by Skogstrand K *et al. Scand. J. Clin. Lab. Invest*.Online publication 2012 DOI 10.3109/00365513.2011.649014

Table I. Concentrations measured in unstimulated plasma and DBSS from healthy controls. The values are medians (range).

	Plasma	DBSS
IL-8	11 (<4–15)	87 (15–130)
IL-18	18 (<10-307)	3109 (1953–3559)
RANTES ng/mL	20 (15-26)	102 (78–105)
MMP-9 ng/mL	213 (89-303)	519 (464–4561)
IFN-γ	<4 (<4–18)	33 (18-43)
GM-CSF	55 (38–77)	<10 (<10-56)
IL-2	12 (<4-87)	<4 ($<4-<4$)
sIL-6rα ng/mL	85 (73–111)	43 (37–44)
MIP-1α	2811 (478-3980)	404 (122-716)
IL-17	203 (<4-249)	121 (86-305)
IL-4	<4 ($<4-<4$)	11 (<4–17)
IL-5	<4 (<4-44)	<4 (<4–79)
IL-6	22 (9-32)	33 (13-48)
IL-10	60 (<4–246)	74 (<4–198)
IL-12	25 (24-40)	31 (12-81)
TNF-α	117 (<4–1316)	<4 (<4–59)
IL-1β	26 (9-34)	141 (65–261)
TNF-β	170 (28–349)	1303 (65–1598)
MCP-1	40 (<10-963)	293 (49-1537)
TGF-β	171 (102-310)	1397 (970–1547)
TREM-1	<488 (<488–1152)	<488 (<488–1285)

Whole blood was drawn from 5 healthy controls and put on ice. After all samples were drawn, plasma and DBSS was prepared and frozen. All concentrations are in pg/mL unless otherwise indicated. <indicates less than the lowest concentration in the working range.

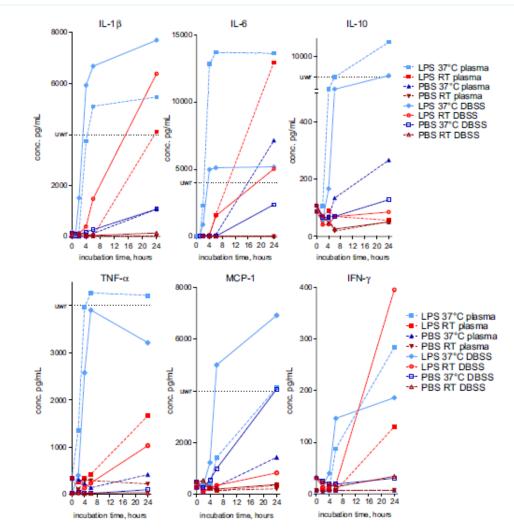


Figure 1. Selected inflammatory markers responses after stimulation with LPS and isotonic saline. The figure shows the mean concentration of selected inflammatory markers after whole blood incubation (blood from 5 healthy volunteers) with either LPS or isotonic saline at room temperature (RT) or 37°C for 5 min, 2, 4, 6 and 24 h before centrifugation (dotted lines) or spotting whole blood on filter paper (continuous lines). Uwr. unner working range.

SUMMARY

- CSF samples are prone to post-sampling artifacts. On the protein level oxidation may be monitored by high-resolution MS
- Urine requires removal of salt for urine proteome analysis in kidney disease studies
- Plasma polypeptides are sensitive indicators of storage time and postsampling differences
- Circulating microparticles are a promising subproteome of blood
- Circulating micro-RNA are robustly analyzed but do not show good concordance between serum and plasma values. More data on normal range, intra- and interindividual variability, ethnicity etc. needed
- It is possible to perform comprehensive genetic analyses on DBSS material using a fraction of a 3.2 mm punch
- Whole genome-amplified DNA from neonatal DBSS is well suited for different genotyping methods, including chips.
- Storage of DBSS for 25 years at -20°C does not affect the quality of wgaDNA
- DBSS may also be used for quantitative RNA microarrays detecting up to 3000 genes and quantitative DNA methylation analysis
- DBSS material can also be used for multiplex immunoassays after extraction of punch in buffer