

Effects of Pre-analytic Variables on

Circulating MicroRNAs Using a CCSG

Biorepository

Hua Zhao, Ph.D. Associate Member Department of Cancer Prevention and Controls

What are MicroRNAs?

Small RNA molecules (~21 nt)

Found in almost every species

>Highly evolutionarily conserved

Regulate gene expression

Human MicroRNAs

- Currently there are 1,527 human microRNAs annotated in miRBase (Release 18.0, Nov. 2011)
- > On average, each microRNA has 200 targets
- Over 60% of all human protein encoding genes are regulated by microRNAs
- Important to all biological functions and pathways

MicroRNAs and Cancer

- microRNA may play a role as tumor suppressor genes (down regulated in cancer) or oncogenes (up regulated in cancer)
- microRNA disregulation is involved in initiation, progression, and resistance to therapy of human cancers
- microRNA as promising biomarkers of cancers

MicroRNAs Detected in:

Circulating microRNAs and Human Cancer

- Over 100 studies have been done in a variety of cancers, including colorectal, prostate, ovarian, breast, lymphoma, etc.
- > Biospecimens include: serum, plasma, and whole blood.
- > A few microRNA based biomarkers have been reported:
 - miR-141 in prostate cancer
 - ➤ miR-195 and let-7a in breast cancer
 - ➤ miR-155, miR-210 and miR-21 in lymphoma, etc

Detection of Human Prostate Cancer by Serum *miR-141*

miR-141 (tumor-associated miRNA)

The Results are Inconsistent across the Studies

The inconsistency might be due to:

- Unclear biological mechanisms
- Variations in study design and execution
- Variations among the cancer patient population
- Tumor heterogeneity
- Variations in biospecimens, from sample procurement to final analyses

Challenges from Biospecimen Perspective

- Types of biospecimens: serum, plasma or whole blood, etc
- Reliable internal controls to normalize the data
- The effects of pre-analytic variables on circulating microRNAs

PARK Affected by Types of Biospecimens

Pilot study: Freeze/Thaw and Plasma MicroRNA

Study design

- > Number of freeze/thaw: 1 vs 2
- Compare number of microRNAs that can be detected in plasma
- Compare expression of selected microRNAs used as internal controls in literatures (*miR-15* and *miR-16*)

Results

- > 1 cycle: 137 microRNAs were detected
- > 2 cycles: 117 microRNAs were detected
- > The expression of *miR-15* was reduced 15% (1 cycle vs 2 cycles)
- The expression of *miR-16* was reduced 20% (1 cycle vs 2 cycles)

Conclusions

- > The number of freeze/thaw affects circulating microRNA expression
- Biospecimen research in circulating microRNA is needed

I. Discover a panel of "housekeeping" circulating microRNAs which can be used as internal controls.

II. Development of circulating microRNA QC tools by studying the effects of pre-analytic variables on the internal control microRNAs identified in Milestone 1.

Scheme of Milestone I

- Perform microRNA profiling in 40 plasma samples to identify a panel of circulating microRNAs based on the following criteria:
 - occur in all tested samples
 - expression levels are not significantly different between cancer cases and controls
 - show little inter-individual variations among cases and controls
- Further evaluated individually in an additional 200 plasma samples from 100 cancer cases and 100 healthy controls using quantitative real-time PCR based analysis
- In parallel, we repeated microRNA profiling and validation analysis in the same study subjects as above, but using whole blood samples collected using PAXgene Blood RNA System

PARK DataBank and BioRepository

- DataBank and BioRepository (DBBR) of Roswell Park Cancer Institute (RPCI) has been used to
 recruit study subjects
 obtain high quality biospecimens
 collect epidemiological/clinical data
- Standard Operation Procedure (SOP) has been developed and strictly followed
- Blood collection, sample processing, and storage are completed in one hour

Cases and Controls in Microarray Profiling

20 Cases

- 8 prostate cancer patients (men) and 12 breast cancer patients (women)
- > Average age of cancer diagnosis: 56 years old
- ➢ All Caucasians

20 Controls

> Matched with cases on age, gender and ethnicity

MicroRNA Profiling Analysis

- Exiqon MicroRNA Ready-to-use PCR array was used
- ≻742 human microRNAs and 6 reference RNAs
- Spike RNAs were used to normalize plateplate variations

Data Analysis Procedure

Whole Blood miR-346 Levels Across The Study Subjects

Whole Blood miR-134 Levels Across The Study Subjects

Comparison Between miR-346 and miR-16 Across The Study Subjects

hsa.mir.346

Plasma miR-346 Levels Across The Study Subjects

Validation Analysis

Cases (100)

- ≻ 56 breast cancer, 36 prostate cancer, 3 colon cancer, and 5 lung cancer cases
- ➢ 91 Caucasians, 6 Blacks, and 3 Hispanics
- ➢ 62 women and 38 men
- > Mean age of cancer diagnosis: 57 years old
- Controls (100)
 - ➢ 93 Caucasians, 6 Blacks, and 1 Hispanics
 - ≻ 80 women and 20 men
 - Mean age of enrollment: 56 years old

- MiScript PCR System (Qiagen) is used to quantify each selected microRNAs
- Selected microRNAs include: *miR-346*, *miR-134*, *miR-934*, *miR-16*, *miR-421*, *miR-222*, *miR-1207*, *miR-339*, *miR-505*, *miR-183*, *miR-374b*, *miR-1260*, *miR-345*, and *miR-323*.
- > Linear regression analysis was applied.

microRNA Internal Controls in Whole Bloods

microRNAs	Overall fold changes/CV	Breast cancer fold changes/CV	Prostate Cancer fold change/CV
miR-346	1.05/0.07	1.08/0.09	1.06/0.11
miR-134	1.09/0.11	1.08/0.09	1.12/0.12
miR-934	1.07/0.06	1.07/0.09	1.08/0.08
miR-16	1.05/0.06	1.08/0.10	1.06/0.09
miR-421	1.13/0.11	1.12/0.14	1.14/0.15
miR-222	1.14/0.16	1.13/0.12	1.18/0.17
miR-1207	1.21/0.21	1.24/0.30	1.20/0.19
miR-339	1.25/0.26	1.24/0.34	1.23/0.18
miR-505	1.32/0.30	1.29/0.28	1.24/0.36
miR-183	1.29/0.26	1.31/0.40	1.30/0.26
miR-374b	1.31/0.17	1.29/0.21	1.29/0.31

microRNA Internal Controls in Whole Bloods

	microRNAs	Overall fold changes/CV	Breast cancer fold changes/CV	Prostate Cancer fold change/CV	
	miR-346	1.05/0.07	1.08/0.09	1.06/0.11	
	miR-134	1.09/0.11	1.08/0.09	1.12/0.12	
	miR-934	1.07/0.06	1.07/0.09	1.08/0.08	
	miR-16	1.05/0.06	1.08/0.10	1.06/0.09	
	miR-421	1.13/0.11	1.12/0.14	1.14/0.15	
	miR-222	1.14/0.16	1.13/0.12	1.18/0.17	
	miR-1207	1.21/0.21	1.24/0.30	1.20/0.19	
	miR-339	1.25/0.26	1.24/0.34	1.23/0.18	
	miR-505	1.32/0.30	1.29/0.28	1.24/0.36	
	miR-183	1.29/0.26	1.31/0.40	1.30/0.26	
	miR-374b	1.31/0.17	1.29/0.21	1.29/0.31	

microRNA Internal Controls in Plasmas

microRNAs	Overall fold changes/CV	Breast cancer fold changes/CV	Prostate Cancer fold change/CV
miR-346	1.30/0.26	1.29/0.26	1.26/0.31
miD 121	1 10/0 21	1 24/0 21	1 22/0 22
1111R-134	1.19/0.31	1.24/0.21	1.22/0.22
miR-934	1.27/0.25	1.29/0.19	1.38/0.29
miR-16	1.15/0.12	1.19/0.17	1.16/0.13

Conclusions for Milestone 1

- We have identified several internal control candidates for whole blood based circulating microRNA analysis, including miR-346, miR-134, miR-934 and miR-16.
- miR-16 is the only microRNA which shows relatively consistent expression in plasma samples.

Development of the circulating microRNA QC tools by studying the effects of the preanalytic variables on the "housekeeping" microRNAs identified in Milestone 1.

Processing delay time

- Plasma: No delay vs 24 hours delay
- Whole blood: 2 hours vs 24 hours delay

Recruitment

- > 7 cases (completed)
- > 7 controls (completed)

Selection of microRNAs

- Whole bloods: miR-346, miR-134 and miR-934
- Plasma: miR-16

- No significant changes in miR-346 levels between 2 hrs and 24 hrs delay
- P=0.892
- Similar trends for miR-134 and miR-934

Plasmas: no delay vs 24 hours

- Systematical decrease miR-16 levels between no delay and 24 hrs delay
- P=0.004
 - Processing time delay affects quantity of circulating microRNAs in plasma

Storage conditions

- Plasma: cryovials at -80°C vs straws in liquid nitrogen
- Whole blood: -20°C vs -80°C

Recruitment

- 7 cases (completed)
- > 7 controls (completed)

Selection of microRNAs

- Whole bloods: miR-346, miR-134 and miR-934
- Plasma: miR-16

- No significant changes in miR-346 levels between -20°C and -80°C
- P=0.852
- Similar trends for miR-134 and miR-934

Plasma: cryovials at -80°C vs straws in liquid nitrogen

- No significant changes in miR-16 levels between cryovials at -80°C and straw in liquid nitrogen
- P=0.792

Storage duration

- Plasma: 0 vs 6 months
- Whole blood: 0 vs 6 months

Recruitment

- 7 cases (Completed)
- > 7 controls (completed)

Number of freeze-thaw

- Plasma: 0 vs 1, 2, and 4
- Whole blood: 0 vs 2

Recruitment

- 7 cases (Completed)
- > 7 controls (completed)

Acknowledgement

- RPCI
 - Christine Ambrosone
 - Warren Davis
 - Mary Nesline
 - Song Liu
 - Jie Shen
 - Song Yao
 - Jyoti Shankar
 - Leo Medico
 - DBBR staff
 - Krysten Stoll, Joshua Mastroianni, Elizabeth Taylor, Lisa Carter

- SAIC-Fredrick
- OBBR, NCI

Funded by NCI Contract No. HHSN261200800001E

