Tissue Quality Index (TQI): A Molecular Test to Estimate Time to Fixation for Formalin Fixed Paraffin Embedded Tissue

David L. Rimm M.D., Ph.D Director, Yale Pathology Tissue Services Professor, Dept. of Pathology Yale University School of Medicine

Disclosure/Disclaimer

- I am a consultant to, stockholder in, and scientific co-founder of HistoRx Inc. the exclusive licensee of the AQUA[®] technology
- I am an author on the Yale held patent on the AQUA technology and receive royalties.
- This project has been funded in whole or in part with the federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

The central problem: Standardization of Protein Assessment of Formalin-Fixed Paraffin-Embedded tissue

- Definition of Extrinsic vs Intrinsic Control
- Solution of the Extrinsic control problem
- Progress toward an Intrinsic control or Tissue Quality Index (previously designated TIC for tissue immunocompetence index)

Extrinsic vs Intrinsic Controls

- Extrinsic controls; control for and standardize all the processes from the stainer through the analysis
- Intrinsic controls; control for and standardize all the processes from the patient to the stainer (pre-analytic varibles)

Generating our solution to quantitative measurement of protein on slides

Available Software: Think like a human

Assign significance to morphologically defined entities and use feature extraction to emulate human

assign

http://www.tissuestudio.com/

Example: a nuclear protein emulates the human definition of nucleus and finds round or roundish entities, then counts signal within the roundish entities AQUA: Think like a molecule Selection of regions only as a function of colocalization of molecular interactions

Example: a nuclear protein is measured by colocalization with DAPI in a cytokeratin positive region

AQUA[®]: objective analyte measurement on a tissue slide based on co-localization

Step 1: Mask (define region of interest, exclude stroma, blank space, etc) = colocalization with Cytokeratin for carcinoma

Step 2: Define the numerator (target) and denominator (compartment)

Step 3: Calculate the AQUA score

Step 4: Convert to absolute concentration or normalize to set of uniform standards

Generating the AQUA® score

TMA-Tissue Microarray WTS-Whole Tissue Section

Estrogen Receptor

Combine DAPI image and cytokeratin image then cluster to assign each pixel to a subcellular compartment

Σ target intensityin compartment pixels= AQUAΣ compartmentscorepixel area

Development and Commercialization Of a Quantitative Protein Measurement Technology (AQUA) from the lab to the patient

Precision Results (ER-alpha)

	Pearson R	Slope
Day 1 v. Day 2	.97	.97
Day 1 v. Day 3	.97	1.01
Day 2 v. Day 3	.98	1.04

%CV = 4.2

Mark Gustavson and Jason Christiansen

ER antibody used is 1D5

Alley Welsh

Lowest positive vs. highest negative

Discordant classification of ER status in YTMA 130 cohort

Two example discordant cases

What is the cause of the discordance?

- Is Q-IF more sensitive than IHC?
- Variation in DAB from lab-to-lab?
- Variation in Hematoxylin counterstain from lab to lab?

The problem is the Hematoxylin

Corporate Headquarters 400 Valley Road Warrington, PA 18976 1-800-523-2575 FAX 1-800-343-3291 Email: info@polysciences.com www.polysciences.com Europe - Germany Polysciences Europe GmbH Handelsstr. 3 D-69214 Eppelheim, Germany (49) 6221-765767 FAX (49) 6221-764620 Email: info@polysciences.de

TECHNICAL DATA SHEET 192

Page 1 of 2

Gill's Hematoxylin - Specific for Staining Nuclei Three formulations for flexibility in nuclear staining.

Gill's Hematoxylin No. 1 for Cytology. (Single Strength) Lower strength formulation, ideal for staining cytology.

Gill's Hematoxylin No. 2 for Histology and Cytology. (Double Strength) This intermediate formulation is used as a counterstain for immunohistochemistry (IHC) chromogens and routine Histology. It is excellent for more intense cytological staining.

Gill's Hematoxylin No. 3 for Histology. (Triple Strength) The strongest formulation of the stain provides greater intensity for histological staining of nuclei with shorter staining times.

entiation in an acid solution is unnecessary. Nucleoli are delicately stained so that their acidophilia may be seen. The colors of counterstains have no interference from nuclear staining with Gill's Hematoxylin formulas.

Chemical Principles of Hematoxylin

Hematoxylin is derived from the extract of logwood and is isolated as a mixture of hematoxylin and hematein. For effectiveness as a stain, hematoxylin must be oxidized to hematein, which is then combined with a metallic iron mordant to increase the selectivity of the stain for chromatin. Sodium iodate is a convenient oxidizing agent while aluminum sulfate is the mordant.⁶ Acetic

Hematoxylin Confounds Automation

RESEARCH ARTICLE

IMAGING

Systematic Analysis of Breast Cancer Morphology Uncovers Stromal Features Associated with Survival

Andrew H. Beck,^{1,2}* Ankur R. Sangoi,^{1,3} Samuel Leung,⁴ Robert J. Marinelli,⁵ Torsten O. Nielsen,⁴ Marc J. van de Vijver,⁶ Robert B. West,¹ Matt van de Rijn,¹ Daphne Koller^{7†}

The C-Path system permits the quantification of thousands of morphologic features in breast cancer microscopic images facilitating the construction of a robust prognostic model and the discovery of new prognostically significant morphologic phenotypes in breast cancer.

Our results suggest that, prior to applying C-Path to images from a new institution that uses a different slide processing regimen, it may be useful to train the epithelial/stromal classifier on a subset of images from the ew institution. Should be "will be necessary"

Extrinsic vs Intrinsic Controls

- Extrinsic controls control for and standardize all the processes from the stainer through the analysis
- Intrinsic controls control for and standardize all the processes from the patient to the stainer (Pre-analytic variables)

Goals of our OBBR Contract/Project

- Development of a Tissue Quality Index (TQI):
 - by developing a quantitative intrinsic control that can measure the degree of degradation of any FFPE sample.
 - Validation of the TQI
- Assessment of the effects of Time to Fixation on Common Markers using QIF
- Proof that result is the same using quantitative DAB-based IHC

Pre-Analytic Variables; Can we treat them as a black box?

If we cannot control preanalytical variables can we quantify the damage or tissue degradation caused by them?

Can we disqualify specimens for companion dx testing?

Approach

Antibody Validation (Overview)

Review

Antibody validation

Jennifer Bordeaux, Allison W. Welsh, Seema Agarwal, Elizabeth Killiam, Maria T. Baquero, Jason A. Hanna, Valsamo K. Anagnostou, and David L. Rimm Department of Pathology, Yale University School of Medicine, New Haven, CT, USA

BioTechniques 48:197-209 (March 2010) doi 10.2144/000113382 Keywords: antibody; validation; immunohistochemistry; immunofluorescence

Antibodies are among the most frequently used tools in basic science research and in clinical assays, but there are no universally accepted guidelines or standardized methods for determining the validity of these reagents. Furthermore, for commercially available antibodies, it is clear that what is on the label does not necessarily correspond to what is in the tube. To validate an antibody, it must be shown to be specific, selective, and reproducible in the context for which it is to be used. In this review, we highlight the common pitfalls when working with antibodies, common practices for validating antibodies, and levels of commercial antibody validation for seven vendors. Finally, we share our algorithm for antibody validation for immunohistochemistry and quantitative immunofluorescence.

Validated

Two fold redundancy N=125, tumor=93, normal=2, cell lines=10 control breast tumor=10, control lung tumor = 10 <u>Collected by Dr. David Hicks and colleague, University of Rochester Medical Center</u>

Summary of markers, which were titrated and validated up to date:

Symbol	Description		Antibody			Supplier		
		Origin	Clone/Isotype	Catalog #	Validated			
Markers of Cold Ischaemia								
ACTB	Beta-Actin	Rabbit	13E5/lgG	13E5/lgG	13E5/lgG	Cell Signaling Technology		
TUBB	Beta-Tubulin	Rabbit	pF3/lgG	2128	yes	Cell Signaling Technology		
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase	Rabbit	14C10/lgG	2118	yes	Cell Signaling Technology		
HIST4	Histone 4	Mouse	L64C1	2935	yes Cell Signaling Techno			
HIST3	Histone 3	Mouse	96C10/lgG1, kappa	3680	yes	Cell Signaling Technology		
HIST2A	Histone 2A	Mouse	L88A6/lgG1	3636	no	no Cell Signaling Technolog		
RPL19	Ribosomal Protein 19	Mouse	lgG2a/K-12	sc-100830	no Santa Cruz Biotechnolo			
RPL9	Ribosomal Protein 9	Mouse	lgG1/ST-7	sc-100828	no Santa Cruz Biotechnology			
RPS16	Ribosomal Protein 16	Rabbit	polyclonal	sc-102087	no	o Santa Cruz Biotechnology		
LMNA/C	Lamin A/C	Rabbit	polycional	2032	yes	Cell Signaling Technology		
LDHA	Lactat Dehydrogenase	Rabbit	lgG, C4B5	3582	yes	Cell Signaling Technology		
ERalpha	Estrogen Receptor alpha	Rabbit	SP1/lgG	RM-9101	yes	Thermo Scientific		
CK	Cytokeratin	Mouse	AE1/AE3/lgG1	M3515	yes	DAKO		
CK	Cytokeratin	Rabbit	polycional	ZO622	yes	DAKO		
Eosin	Shandon EosinY aqueous			6766009	yes	Thermo Electron Corporation		
Markers of Hypoxia								
VEGF	Vascular Endothelial Growth Factor	Mouse	VG1/lgG1, kappa	M7273	no	DAKO		
CCND1	Cyclin D1	Rabbit	lgG/SP4	RM-9104	yes	Thermo Fisher Fremont		
Caspase	Cleaved Caspase 3 (Asp175)	Rabbit	polycional	9661	yes	Cell Signaling Technology		
HIF1	Hypoxia Inducible Factor 1	Rabbit	polyclonal	NB 100-449	yes	Novus Biological		
AKAP13	A-kinase anchoring protein13	Mouse	lgG2a/ZX-18	sc-81902	yes	Santa Cruz Biotechnology		
CDC42		Mouse	lgG3/B-8	sc-8401	yes	Santa Cruz Biotechnology		
CCNB1	Cyclin B1	Mouse	GNS-11/lgG2	554178	yes	BD Biosciences		
UBE2Q2	Ubiquitin conjugated enzyme E2 Q2	Mouse	lgG2a/R-16	sc-100625	no	Santa Cruz Biotechnology		
HIF-2alpha	Hypoxia inducible factor - 2alpha	Mouse	ep190b/lgG1	ab8365	yes	abcam		
HIF-3A	Hypoxia inducible factor - 3A	Rabbit	polyclonal(aa581-592)	LS-B714	no	Lifespan Biosciences		
CA9	Carbonic Anhydrase IX	Rabbit	polyclonal(aa581-592)	LS-B273	no	Lifespan Biosciences		
Cleaved Caspase 8	Cleaved Caspase 8	Rabbit	lgG, 18C8	9496	in progress	Cell Signaling Technology		
Markers of phosphorylated proteins								
pAKT 473	phospho-Akt (ser473)	Rabbit	D9E/lgG	4060	yes	Cell Signaling Technology		
pAKT 308	Phosho-Akt (Thr308)	Rabbit	C31E5E/lgG	2965	in progress	Cell Signaling Technology		
pMAPK	Phospho-p44/43MAPK (Erk1/2) (Thr292/Tyr204)	Rabbit	lgG	4370	yes	Cell Signaling Technology		
pER	Phospho-Estrogen Receptor alpha (Ser118)	Mouse	16J4/lgG2b	2511	yes	Cell Signaling Technology		
Anti-Phosphotyrosine	4G10 Anti-Phosphotyrosine	Mouse	lgG2b	05-1050	yes	Millipore		
Anti-Phosphoserine	4A4 Anti-Phosphserine	Mouse	lgG1/4A4	05-1000	no	Millipore		
Anti-Phosphoserine/threonine/tyrosine	Anti-Phosphoserine/threonine/tyrosine	Mouse	lgG1/spm101	AB15556	no	abcam		
p53	Anti-Human p53 protein	Mouse	lgG2b. DO-7	M7001	in progress	DAKO		
Markers of posttranslational modification								
Sumo1	small ubiquitin related modifier 1	Rabbit	Y299/lgG	ab32058	yes	abcam		
Acetylated-Lysine	proteins posttranslat. Modified by acetylation	Rabbit	polyclonal, purified	9441	yes	Cell Signaling Technology		
NEDD8	neural precursor cell-expr. devel. Downreg. protein9	Rabbit	IgG, 19E3	2754	yes	Cell Signaling Technology		

Change in expression as a function of time to fixation

GAPDH - Tumor Mask

time to fixation

Veronique Neumeister

time to fixation

Building the TQI Model

- 1. Select the two variables that are most positively correlated with TIME and the two variables that are most negatively correlated with TIME.
- 2. Define the sum of the first two variables "X1" and the sum of the last two variables as "X2".
- We predict a sample to be fresher than 60 minutes if X2>X1.
- 4. If X1>X2, then sample is predicted to be collected more than 60 minutes after resection.

Building the TQI Model

We repeated the procedure 500 times and we computed the average sensitivity (black bars) and the average specificity (red bars) for each marker. Values above the 0.5 threshold indicate that the marker is performing better than a random classifier.

Sensitivity and specificity were assessed in the time interval between 30 minutes and 100 minutes

Fabio Parisi and Yuval Kluger

TQI Model Construction

Best Model from full data training:

X1*=Lamin+Hif2a X2=MAPK+miR221

* AKAP13 is a candidate substitute for X1 in case of technical issues in measuring Lamin or Hif2a.

Analysis restricted to the interval between 30minutes and 100minutes, = 77% of the total observations

- Histogram of density of observations, bottom of the plot

-Times of each observation in the interval, red crosses.

TQI Model Assessment

The variables selected in the model trained on the full data exhibited performances that were among the highest in the dataset.

Validation of the TQI (TMA under construction)

Time of the tissue in formalin	1 hour	2 hours	24 hours	72 hours	1 hour	2 hours	24 hours	72 hours	1 hour	2 hours	24 hours	72 hours	1 hour	2 hours	24 hours	72 hours	
	\bigcirc	\bigcirc	\bigcirc	\bigcirc													Patient 1
Normal	\bigcirc	\bigcirc	\bigcirc	\bigcirc													Patient 2
Breast	\bigcirc	\bigcirc	\bigcirc	\bigcirc													Patient 3
TMA	\bigcirc	\bigcirc	\bigcirc	\bigcirc													Patient 4
	\bigcirc	\bigcirc	\bigcirc	\bigcirc													Patient 5

Time to fixation 15 – 30 min

Time to fixation 1 hour

Time to fixation 4 – 12 hours

Normal Breast TMA

Goals of our OBBR Contract/Project

- Development of a Tissue Quality Index (TQI):
 - by developing a quantitative intrinsic control that can measure the degree of degradation of any FFPE sample.
 - Validation of the TQI
- Assessment of the effects of Time to Fixation on Common Markers using QIF
- Proof that result is the same using quantitative DAB-based IHC

QIF measurement of ER, PgR, HER2, and Ki67 on TTF TMA

ER by SP1 – 415 min

ER by SP1 - 120 min

time to formalin in minutes

PgR by 636 – 120 min

time to formalin in minutes

QIF measurement of ER, PgR, HER2, and Ki67 on TTF TMA

HER2, CB11 120 min time to formalin in minutes

Ki67, SP6

Ki67, SP6

Conclusions: Assessment of the Effects of Time to Fixation on Common Markers

- No significant loss of expression for ER, PgR, HER2 or Ki67 within 120 minutes (under-powered for longer time points)
- For complete details see Poster by Neumeister et al.
- Arguably, we have tested the wrong time window; it appears that loss occurs after 120 minutes

5077 women with breast cancer among the study hospitals were tested for ER/PR between 1997 and 2003 in central lab

Frequency of ER and PR negative test results by day of surgery

Day	Cases	ER-Negative	PR-Negative
Sunday	16	3	6
Monday	1252	230	325
Tuesday	1176	248	332
Wednesday	784	170	212
Thursday	904	191	259
Friday	919	216	276
Saturday	26	7	8
System	5077	1065	1418

Frequency of ER/PR negativity significantly increased with each day of the week, both for ER (P = 0.03) and PR (P = 0.059 for trends).

Abbreviations: ER, estrogen receptor; PR, progesterone receptor.

Hammond et al. Arch Pathol Lab Med. 2010;134:606-612

Goals of our OBBR Contract/Project

- Development of a Tissue Quality Index (TQI):
 - by developing a quantitative intrinsic control that can measure the degree of degradation of any FFPE sample.
 - Validation of the TQI
- Assessment of the effects of Time to Fixation on Common Markers using QIF
- Proof that result is the same using quantitative DAB-based IHC

Automated scoring systems and algorithms for DAB stain

Positive Pixel Count Algorithm User's Guide

The Positive Pixel Count Algorithm

The Positive Pixel Count algorithm can be used to quantify the amount of a specific stain present in a scanned slide image. You will specify a color (range of hues and saturation) and three intensity ranges (weak, positive, and strong). For pixels which satisfy the color specification, the algorithm counts the number and intensity-sum in each intensity range, along with three additional quantities:

average intensity, ratio of strong/total number, and average intensity of weak+positive pixels.

The algorithm has a set of default input parameters when first selected—these inputs have been pre-configured for Brown color quantification in the three intensity ranges (220-175, 175-100, and 100-0). Pixels which are stained, but do not fall into the positive-color specification, are considered negative stained pixels—these pixels are counted as well, so that the fraction of positive to total stained pixels is determined.

- Requires binning into 3 categories by intensity range
- Requires user-defined selection of region of interest (no masking capacity as used here)

IHC Nuclear Image Analysis Algorithm:

This algorithm is based on a cell feature detection method. Optical density is then measured in the nuclei. Based on the intensity, nuclear staining is classified as negative (0), weak positive (1+), medium (2+) or strong positive (3+).

Chapter 1 - Overview

Algorithm Description

Prior to running the algorithm, a qualified pathologist needs to use the ImageScope annotation tools to outline a set of tumor-cell only regions that are representative of the tumor.

The IHC Nuclear Image Analysis algorithm detects the nuclear staining for a target chromogen for the individual cells in those regions and quantifies their intensity. Nuclear staining classified as 0, 1+, 2+ and 3+ is based on nuclear staining intensity. A nucleus is classified 0 when it has no nuclear staining. A nucleus is classified 1+ when it has weak nuclear staining. A nucleus is classified 2+ when it has moderate nuclear staining. A nucleus is classified 3+ when it has intense nuclear staining. Based on the percentages of 0, 1+, 2+ and 3+ nuclei, the percentage of positive stained nuclei as a percentage of 0 to 100% and the average staining intensity of the positive nuclei as a score of 0, 1+, 2+ or 3+ is determined.

IHC Nuclear Image Analysis User's Guide

Final Score

2

The IHC Nuclear Image Analysis is intended to be used as an aid to a pathologist. It is the responsibility of the pathologist to provide the final score based on his/her qualitative assessment and the quantitative information provided by the IHC Nuclear Image Analysis algorithm.

 The pathologist determines the final percentage of positive nuclei and average staining intensity of positive nuclei.

Annotation

of a TMA spot, stained for ER SP1

Positive Pixel Count

Algorithm	Positive Pixel Count v9
Date	2012/01/26
StartTime	03:28:11 AM
EndTime	03:28:12 AM
Status	0
StatusDescription	
Nwp = Number of Weak Positive	50202.
Np = Number of Positive	142108.
Nsp = Number of Strong Positive	353940.
Iwp = Total Intensity of Weak Positive	9653366.
Ip = Total Intensity of Positive	19860575.
Isp = Total Intensity of Strong Positive	13294586.
lavg = (lwp+lp+lsp)/(Nwp+Np+Nsp)	78.368
Nsr = Nsp/(Nwp+Np+Nsp)	0.647945
lwavg= (lwp+lp)/(Nwp+Np)	153.471
Nn = Number of Negative	459702.
In = Total Intensity of Negative	80647809.
NTotal = Total Number (Positive+Negative)	1005952.
ATotal = Total Area (millimeter-squared)	0.24827925454847999
Positivity = NPositive/NTotal	0.543018

Nuclear Algorithm

Algorithm	Nuclear v9
Date	2012/01/17
StartTime	06:42:53 AM
EndTime	06:42:58 AM
Status	0
StatusDescription	
Percent Positive Nuclei	84.6154
Intensity Score	3
(3+) Percent Nuclei	75.2275
(2+) Percent Nuclei	6.69975
(1+) Percent Nuclei	2.68817
(0+) Percent Nuclei	15.3846
Average Positive Intensity	130.888
Average Negative Intensity	237.629
(3+) Nuclei	1819
(2+) Nuclei	162
(1+) Nuclei	65
(0+) Nuclei	372
Total Nuclei	2418

Intra array reproducibility on the time to fixation array for ER SP1 – Assessed with IF/AQUA and IHC/positive pixel count and nucl. algorithm

TN3 first fold Nucl alg.: 0 Pos pix count: 0.09 AQUA: 176

max AQUA ESR1 max perc pos pix ESR1

Nuclear algorithm: from 1,2,3 to a scale from 0-300: intensity * percent positive nuclei

Assessment of possible change of ER expression according to increasing time to

time to fixation inminutes

n

Yale Pathology Tissue Services

Thanks to: Lori Charette Joe Salame

Rimm Group: Valsamo (Elsa) Anagnostou **Bonnie Gould Rothberg** Veronique Neumeister Seema Agarwal **Anastasios Dimou Huan Cheng** Maria Baquero **Alley Welsh Jason Hanna** Jennifer Bordeaux Halley Wimberly Summar Siddiqui **Flisabeth Richardson** Hollis Viray Yalai Bai **Robert Camp**

Yale Collaborators Annette Molinaro Karen Lostrito Juliana Tolles Harriet Kluger Ruth Halaban Steve Ariyan Daniel Boffa Catherine Sullivan Frank Detterbeck Lynn Tanoue Lyndsay Harris

Joe Salame Sudha Kumar

Aruna Madan Peter Gershkovich

Outside Yale Collaborators Konstantinos Syrigos (Athens) Gerold Bepler (Moffitt-KCI) Daniel Hayes and SWOG Elaine Alarid (UW) Bruce Haffty (CINJ)

Work supported by grants from the NCI, DOD, the Susan G Komen Foundation for the Cure and the NCI Office of Biospecimen and Biorepository Research (OBBR)

Rimm Lab 2010

www.tissuearray.org