

Effects of Pre-analytic Variables on

Circulating MicroRNAs Using a CCSG

Biorepository

Hua Zhao, Ph.D. Associate Member Department of Cancer Prevention and Controls

What are MicroRNAs?

Small RNA molecules (~21 nt)

Found in almost every species

>Highly evolutionarily conserved

Regulate gene expression

Human MicroRNAs

- Currently there are 1,048 human microRNAs annotated in miRBase (Release 16.0, Dec. 2010)
- > On average, each microRNA has 200 targets
- Over 60% of all human protein encoding genes are regulated by microRNAs
- Important functions in every aspect of the biology

MicroRNAs and Cancer

- microRNA may play a role as tumor suppressor genes (down regulated in cancer) or oncogenes (up regulated in cancer)
- microRNA disregulation is involved in initiation, progression, and resistance to therapy of human cancers
- microRNA as promising biomarkers of cancers

MicroRNAs Detected in:

Plasma RNAs from Colon Cancer Patients

RNA 2008 14: 1424-1432

Circulating microRNAs and Human Cancer

- Around 30 studies have been done in a variety of cancers, including colorectal, prostate, ovarian, breast, lymphoma, etc.
- > Biospecimens include: serum, plasma, and whole blood.
- > A few microRNA based biomarkers have been reported:
 - ➤ miR-141 in prostate cancer
 - ➤ miR-195 and let-7a in breast cancer
 - ➤ miR-155, miR-210 and miR-21 in lymphoma, etc

Detection of Human Prostate Cancer by Serum *miR-141*

miR-141 (tumor-associated miRNA)

Heneghan, et al, Annual of Surgery, 2010

Plasma microRNA Clusters in Breast Cancer Cases and Controls

African American Control African American Case

18 miRNAs were found to be differentially expressed between cases and controls, with 9 upregulated in cases.

Red: up-regulated / green: down-regulated

Plasma Let-7d in Breast Cancer Cases and Controls

Challenges from Biospecimen Perspective

- No reliable internal control to normalize the circulating microRNA data
- Little is known about pre-analytic variables of circulating microRNAs
- No reliable QC tools available to assess the effects of pre-analytic variables on circulating microRNAs

Pilot study: Freeze/Thaw and Plasma MicroRNA

Study design

- Number of freeze/thaw: 1 vs 2
- Compare number of microRNAs that can be detected in plasma
- Compare expression of selected microRNAs used as internal controls in literatures (*miR-15* and *miR-16*)

Results

- > 1 cycle: 137 microRNAs were detected
- > 2 cycles: 117 microRNAs were detected
- The expression of *miR-15* was reduced 45% (1 cycle vs 2 cycles)
- The expression of *miR-16* was reduced 60% (1 cycle vs 2 cycles)

Conclusions

- > The number of freeze/thaw affects circulating microRNA expression
- Biospecimen research in circulating microRNA is needed

I. Discover a panel of "housekeeping" circulating microRNAs which can be used as internal controls.

 II. Development of circulating microRNA QC tools by studying the effects of pre-analytic variables on the internal control microRNAs identified in Objective 1.

Scheme of Objective I

- Perform microRNA profiling in 40 plasma samples to identify a panel of circulating microRNAs based on the following criteria:
 - occur in all tested samples
 - expression levels are not significantly different between cancer cases and controls
 - show little inter-individual variations among cases and controls
- Further evaluated individually in an additional 200 plasma samples from 100 cancer cases and 100 healthy controls using quantitative real-time PCR based analysis
- In parallel, we will repeat microRNA profiling and validation analysis in the same study subjects as above, but using whole blood samples collected using PAXgene Blood RNA System

Scheme of Objective II

Analyzing the Effects of Pre-Analytical Variables on miRNAs

PARK DataBank and BioRepository

- DataBank and BioRepository (DBBR) of Roswell Park Cancer Institute (RPCI) will be used to
 recruit study subjects
 obtain high quality biospecimens
 collect epidemiological/clinical data
- Standard Operation Procedure (SOP) has been developed and strictly followed
- Blood collection, sample processing, and storage are completed in one hour

Overview of the Study Progress

- Study started in Nov. 2010
- So far, we have completed microRNA profiling in 40 study subjects (both plasma and whole blood)
- 152/200 (76%) of the study subjects needed for the validation analysis have been recruited

Cases and Controls in Microarray Profiling

20 Cases

- 8 prostate cancer patients (men) and 12 breast cancer patients (women)
- > Average age of cancer diagnosis: 56 years old
- ➤ All Caucasians

20 Controls

> Matched with cases on age, gender and ethnicity

MicroRNA Profiling Analysis

- Exiqon MicroRNA Ready-to-use PCR array was used
- ≻742 human microRNAs and 6 reference RNAs
- Spike RNAs were used to normalize plateplate variations

Data Analysis Procedure

Prioritization of "Housekeeping microRNAs"

Whole Blood miR-346 Levels Across The Study Subjects

Sensitivity and Specificity Analysis

Whole Blood miR-134 Levels Across The Study Subjects

Sensitivity and Specificity Analysis

PControl

hsa.mir.346

Plasma miR-346 Levels Across The Study Subjects

Conclusion

- miR-346, miR-134 and miR-934 are potential candidates for microRNA internal controls in whole bloods.
- miR-346 is a potential candidate for microRNA internal control in plasma.
- The findings will be further assessed in validation analysis.
- If they are validated, these microRNAs will be used to assess the effects of pre-analytic variables on circulating microRNAs.

Acknowledgement

- RPCI
 - Christine Ambrosone
 - Warren Davis
 - Mary Nesline
 - Song Liu
 - Song Yao
 - Jyoti Shankar
 - Leo Medico
 - DBBR staff
 - Krysten Stoll, Joshua Mastroianni, Elizabeth Taylor, Lisa Carter

- SAIC-Fredrick
- OBBR, NCI

Funded by NCI Contract No. HHSN261200800001E

Mank Mark

DBBR Process Flow

