

Research and Development on Human Biospecimen Integrity

Daniel Chelsky, Ph.D.

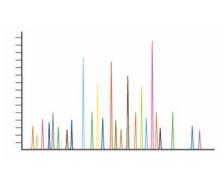
BRN Symposium

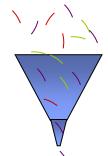
March 29, 2011

Overall goal:

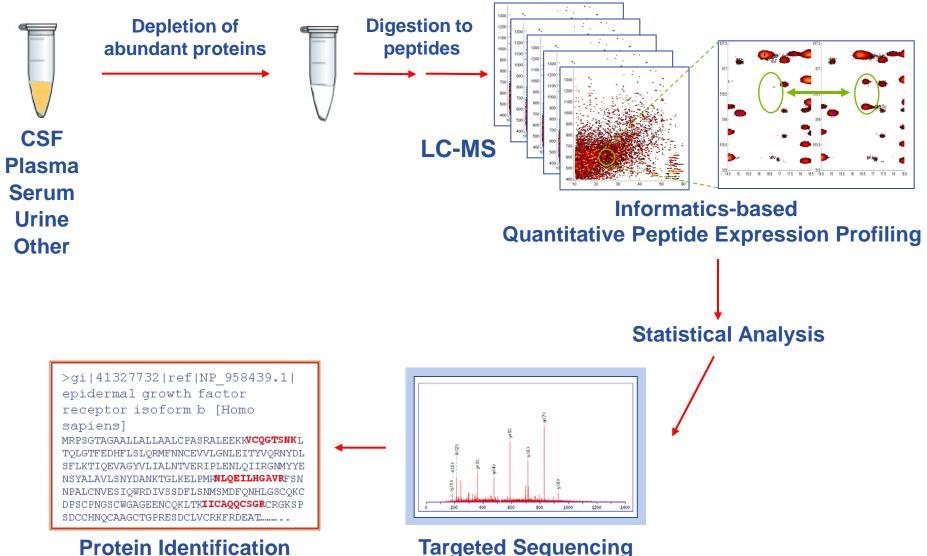
- Best practices for proteomics analysis of <u>blood-derived biospecimens</u>
 - Collection, manipulation and storage of samples
 - Guidelines to follow
 - Sample quality assessment assay
 - Tools to facilitate each step

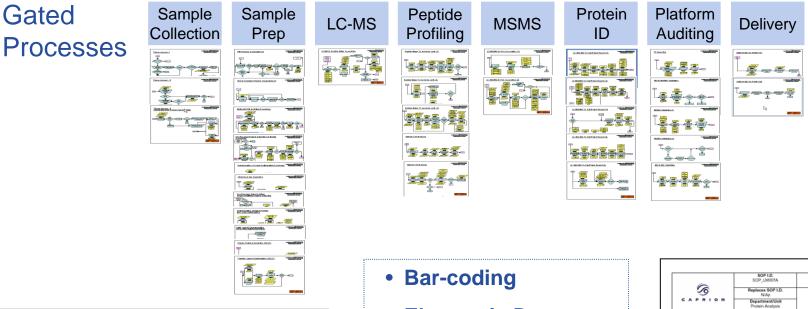
MS-BASED BIOMARKER DISCOVERY PROCESS

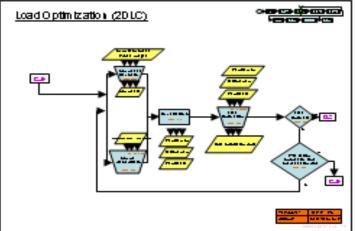

Biomarker Discovery


- Label-free, gel-free quantitative mass spectrometry
- Non-hypothesis based discovery approach
- Profile 1000's of proteins in 100's samples
- Identify differentially expressed proteins as candidate biomarkers

Multiplexed Assays


- Quantify 1 to 700 proteins in a single "MRM" assay
- Proteins from mass spec, literature, transcriptomics, etc.
- Rapid assay development
- Ab-free or ab enrichment
- Synthetic labeled standards for absolute quantification
- Profile candidate markers in 1,000's samples


BIOMARKER DISCOVERY PROCESS: PROTEOMIC EXPRESSION PROFILING



QA ENVIRONMENT AND PROCESS ARE ESSENTIAL TO REDUCING VARIABILITY

- Electronic Data Management (LIMS)
- Standard Operating
 Procedures
- Locked freezers
- Locked raw data
- Automatic backup

Chain of Custody

6	SOP LD. SOP_LM007A	CONFIDENTIAL
3	Replaces SOP I.D. N/Ap	Author/Reviewer (Initials/Date)
CAPRION	Department/Unit Protein Analysis	1
On-Line 2D	LC-MS and 2DLC-MSIMS Sa Micromass Ultima Q-TOF Sy	
1. Objective		
This procedure describes the a	nalysis of samples requiring on-line 2	DLC-MS or 2DLC-MS/MS systems.
2. Purpose		
	is to describe the methodology to be in the using a Micromass Ultima Q-TO	used for on-line 2DLC-MS and on-line F LC/MS system.
3. Scope		
This procedure applies to al Micromass Ultima Q-TOF LC/N		is 2DLC-MS or 2DLC-MS/MS using
4. Responsibilities		
4.1 LC-MS and LC-MS/MS Pro this procedure are followed and		insuring that all steps described within
4.2 All Users assigned to the s this procedure.	ample analysis are responsible for fo	lowing the steps described within
4.3 The Program Leader is reader to read the mode of Injection.	sponsible for determining the concent	tration of samples, volume to inject
5. Definitions and Acronym	5	
5.1 Definitions NIAp		
Approved:	Cept.:	Date:
Approved.	Dept:	Date:
Approved	Dept.: Quality Assurance	Date:
Effective Date / YYYY/mmidd QA Final Approval:		·
IT IS STRIC	TLY FORBIDDEN TO DUPLICATE 1	THIS DOCUMENT
SOP N° dFile: 2004-11-10		Page 1 of 13

SOPs

PROBLEM:

No clear guidelines for the collection, processing, storage and analysis of plasma/serum for proteomics analysis

- Serum or plasma
- EDTA or heparin (for plasma)
- Added protease inhibitors (commercial tubes or DIY)
- Acceptable processing times and temperatures (before and after spin)
- Freezer temperature and storage time
- Multiple freeze-thaw cycles
- High abundance protein depletion

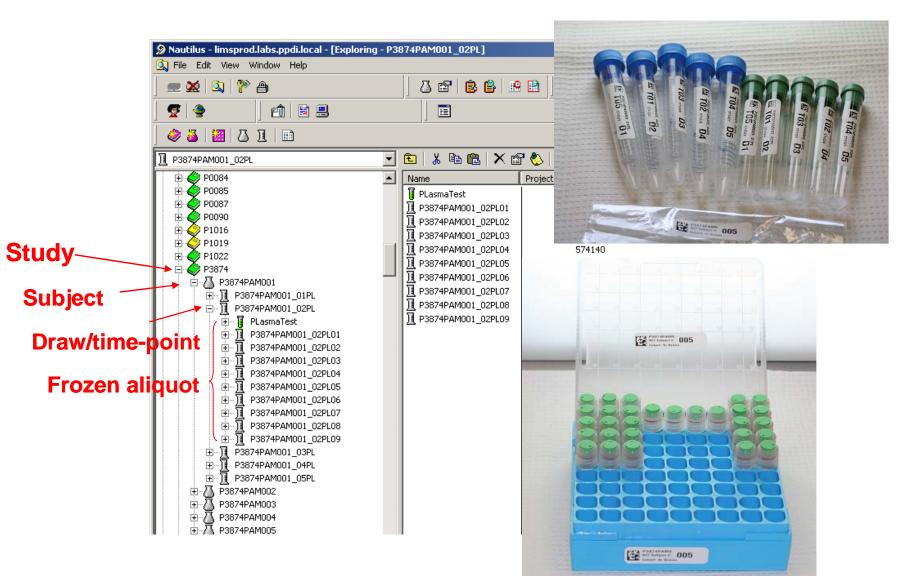
SAMPLE COLLECTION AND STORAGE VARIABLES: FULL STUDY

1. Type of collection tube

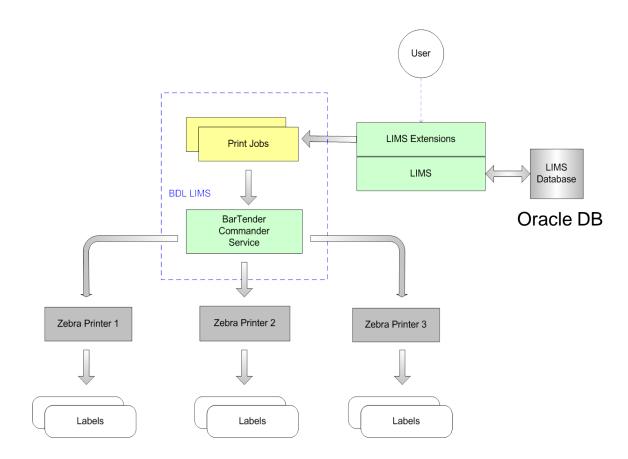
- BD serum SST tube with gel and clot activator (red/grey top)
- BD heparin tube (green top)
- BD K₂-EDTA tube (lavender top)
- Becton Dickinson (BD) P100
- BD K₂-EDTA tube (lavender top) with protease inhibitor cocktail added at the time of pipetting separated plasma

2. Variation in the 2 key bench times

- Before centrifugation
- After centrifugation but before pipetting and freezing
- Up to 4 days
- 20°C or 37°C
- 3. Number of freeze-thaw cycles
- 4. Length of time in -20°C or -80°C storage
- 5. Cancer patients and age and gender-matched controls
 - Prostate and breast cancer


DESIGNING A WELL CONTROLLED STUDY

- Well defined and documented study design
- Protocols and SOPs for each step
- Bar coding of all tubes
- Chain of custody
- LIMS for information storage and sample tracking
- Well maintained and documented instrumentation
- Freezers on alarm with remote email alert
- Tool for managing blood collection, processing and storage
 - Interactive prompter and timer
 - Allows analysis of time taken for each step and variability
 - Allows documentation and comparison of process at multiple centers in clinical trial

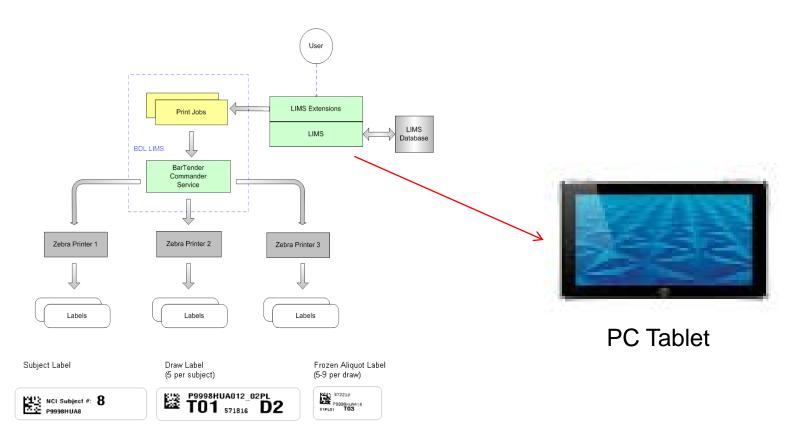

ORACLE-BASED LIMS (NAUTILUS)

LIMS Barcode Label System v2.0

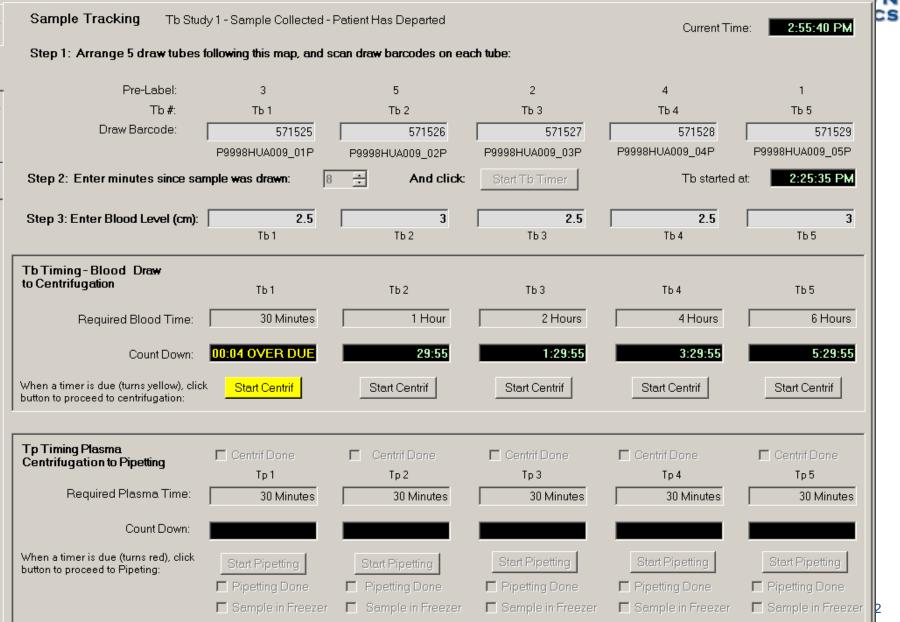
Two-dimensional barcodes

Subject Label

Draw Label (5 per subject)


(5 per subject) P9998HUA012_02PL TO1 571816 D2 Frozen Aliquot Label (5-9 per draw)

PC TABLET FOR PROCESS CONTROL



LIMS Barcode Label System v2.0

PC TABLET PROCESS CONTROL SCREEN

NCI Biospecimen Integrity Project - Sample Collector

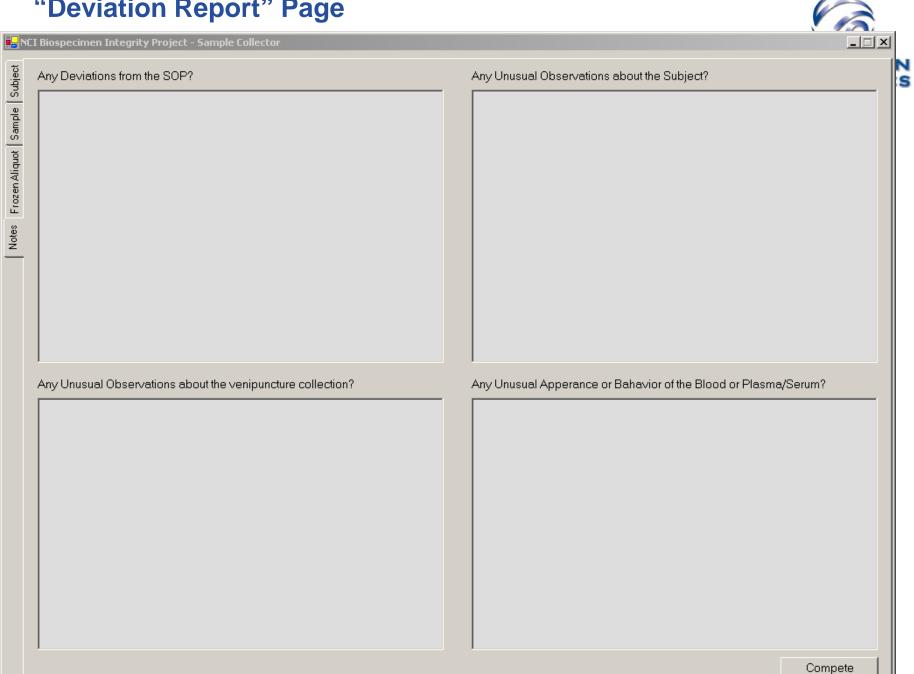
N

Pre-Centrifugation Scan - Tb 1				
Scan Barcode: 571525				
OK Cancel				

Click "Start Centrif" button,

"Pre-Centrifugation Scan" pops up,

requests to scan barcode on Vacutainer tube


Sample Page – Tp 1 time due, timer and "Start Pippeting" button turned red, flashes and emits repeating (distinct) warning tone

N

CS

🖳 NCI Biospecimen Integrity Project - Sample Collector Subject Sample Tracking Tb Study 1 - Sample Collected - Patient Has Departed Current Time: 3:26:06 PM Sample Step 1: Arrange 5 draw tubes following this map, and scan draw barcodes on each tube: Pre-Label: 3 5 2 Notes Frozen Aliquot Tb#: Tb 1 Tb 2 ть з Tb 4 Tb 5 Draw Barcode: 571525 571527 571526 571528 571529 P9998HUA009_04P P9998HUA009_05P P9998HUA009_01P P9998HUA009 02P P9998HUA009_03P ÷ 2:25:35 PM Step 2: Enter minutes since sample was drawn: And click: Tb started at: Step 3: Enter Blood Level (cm): 2.5 3 2.5 2.5 3 ТЬ 1 ТЬ 2 ТЬ З Tb 4 Tb 5 Tb Timing-Blood Draw to Centrifugation Tb 1 ТЬ 2 ТЬ З ТЬ 4 Tb 5 Required Blood Time: 30 Minutes 1 Hour 2 Hours 4 Hours 6 Hours 00:07 OVER DUE 00:17 OVER DUE 59:29 2:59:29 4:59:29 Count Down: When a timer is due (turns yellow), click 🔽 Centrif Begun Start Centrif Start Centrif Start Centrif Centrif Begun button to proceed to centrifugation: Tp Timing Plasma Centrif Done Centrif Done Centrif Done Centrif Done Centrif Done Centrifugation to Pipetting Tp 2 Tp 3 Tp 5 Tp 1 Tp 4 Required Plasma Time: 30 Minutes 30 Minutes 30 Minutes 30 Minutes 30 Minutes Count Down: 00:07 OVER DUE When a timer is due (turns red), click Start Pipetting Start Pipetting Start Pipetting Start Pipetting Start Pipetting button to proceed to Pipeting: Pipetting Done Pipetting Done Pipetting Done Pipetting Done Pipetting Done □ Sample in Freezer ■ Sample in Freezer Sample in Freezer Sample in Freezer Sample in Freezer

"Deviation Report" Page

LIMS METADATA STORAGE (ELECTRONIC MEDICAL RECORD)

Medical Record				×
Enter subject #: 44	Subject ID: P3874PAM044			
Signed Informed Consent? • Yes	No Year of Birth: 1933 💌 Gen	der: O Male 💿 Female	Approx Date of Initial Cancer Diagnosis:	01-Jan-2000 💌
Current Cancer Treatments (last 3 months):	Most recent one or few blood tests, e	especially capture data on cancel mark	ers if recent (last 6 months)	
Chemotherapy, Oral				<u> </u>
Chemotherapy, IV or IM (by needle)				
Radiation				
🗹 None				-
Recent Medications:		Other Active Health Problems:		_
Multi-Vits, dose unknown, daily; Vit-D, dose u Dil, dose unknown, daily; Vit-E, dose unknow	ınknown, daily; Lutein, dose unknown, daily; Fish 🗾 ın, daily; Tums-Calcium, dose unknown, daily	none		X
Breast Cancer Info:		Prostate Cancer Info:		
Surgery, Lumpectomy Da	ate: 01-Jan-2001 💌	Surgey, removal of prosta	te Date: 01-Jan-2010	
	ate: 01-Jan-2010			
Menopause Status:		TNM Staging System Number	s: T= N= M=	
	Post-menopausal	Gleason grade:		
Estrogen Receptor (ER) Status:	IHC Not Performed	Gleason score:		
Progesterone Receptor (PR) Status:	IHC Not Performed	Other notable comments:		
HER2/ERBB2 IHC Status:	IHC Not Performed	Patient had DCIS (Ductal Ca	rcinoma In Situ).	
Histological Type:	Other 💌			
Tumor Stage:	Corordinator initials:	W Date: 08-Jul -201	0 💌 ОК	Cancel

Preliminary Biospecimen Analysis

PRELIMINARY BIOSPECIMEN ANALYSIS

Scope of preliminary study:

- Proteomic analysis on plasma from cancer patients
 - 3 tube types:
 - Heparin, EDTA, EDTA/PI
 - 3 incubation times at RT prior to centrifugation
 - 0.5, 4 and 24 h
 - n = 10

Analysis performed:

- Samples depleted of high abundance plasma proteins with Agilent MARS-14 column
- Protein digested with trypsin and analyzed by LC-MS
- Peak alignment and matching performed with Rosetta's Elucidator software
- Differential expression analysis
- Peptides sequenced and clustered

PEPTIDE POPULATION DIFFERS BETWEEN HEPARIN AND EDTA PLASMA

Heparin vs. EDTA

- Total components: 6,600
- Heparin-specific components: 5,000
- EDTA+/-PI-specific components: 5,700
- Only approx. 4,000 (61%) components shared between heparin and EDTA
- 83% proteins are shared between EDTA and heparin
- Total number of proteins detected is almost the same

EDTA +/- Protease Inhibitors

- 140/5700 (2.5%) components differ > 2 fold between EDTA +/- PI
- Adding protease inhibitors increases number of proteins detectable from 135 to 137

Comparison ID	Description	Differentially expressed peptides	Differentially expressed proteins
1	[Heparin] 0.5 hr vs 4 hr	0	0
2	[Heparin] 0.5 hr vs 24 hr	2	1
4	[EDTA] 0.5 hr vs 4 hr	3	3
5	[EDTA] 0.5 hr vs 24 hr	11	4
7	[EDTA+PI] 0.5 hr vs 4 hr	4	4
8	[EDTA+PI] 0.5 hr vs 24 hr	12	5

Selection criteria:

- Fold-change \geq 2;
- p-value ≤ 0.05;
- q-value ≤ 0.05

Results:

- Small effects of incubation time
- Only slightly more changes with EDTA than heparin
- Small effect of adding protease inhibitors

IMPACT OF SMALLER CHANGES ON CALCULATING

Comparison_ID	Description	DI > 2 pvalue <= 0.05 qvalue <= 0.05	DI > 1.5 pvalue <= 0.05 qvalue <= 0.05
1	[Heparin] 0.5 hr vs 4 hr	0	1
2	[Heparin] 0.5 hr vs 24 hr	3	3
3	[Heparin] 4 hr vs 24 hr	2	3
4	[EDTA] 0.5 hr vs 4 hr	3	11
5	[EDTA] 0.5 hr vs 24 hr	21	27
6	[EDTA] 4 hr vs 24 hr	20	29
7	[EDTA+PI] 0.5 hr vs 4 hr	7	12
8	[EDTA+PI] 0.5 hr vs 24 hr	26	33
9	[EDTA+PI] 4 hr vs 24 hr	21	30
10	[0.5 hr] Heparin vs EDTA	2,606	3,569
11	[0.5 hr] Heparin vs EDTA+PI	2,897	3,804
12	[0.5 hr] EDTA vs EDTA+PI	141	346
13	[4 hr] Heparin vs EDTA	2,472	3,408
14	[4 hr] Heparin vs EDTA+PI	2,785	3,656
15	[4 hr] EDTA vs EDTA+PI	77	178
16	[24 hr] Heparin vs EDTA	2,729	3,642
17	[24 hr] Heparin vs EDTA+PI	2,846	3,765
18	[24 hr] EDTA vs EDTA+PI	40	76
19	0.5 hr vs 4 hr	2	7
20	0.5 hr vs 24 hr	19	21
21	4 hr vs 24 hr	20	24
22	Heparin vs EDTA	2,732	3,778
23	Heparin vs EDTA+PI	2,967	3,971
24	EDTA vs EDTA+PI	140	368
		3,386	4,498

OXIDIZED PEPTIDES ARE NOT SELECTIVELY DISTRIBUTED

Differentially expressed components/peptides/proteins	
(DI > 2 pvalue <= 0.05 qvalue <= 0.05)	

Comparison <u>.</u> ID	- Description	#Components	Upregulated	Downregulated	Upregulated	Downregulated
19	0.5 hr vs 4 hr	2	0	0	0	0
20	0.5 hr vs 24 hr	19	0	0	0	0
21	4 hr vs 24 hr	20	0	0	0	0
22	Heparin vs EDTA	2,732	13	34	10	6
23	Heparin vs EDTA+PI	2,967	11	35	8	7
24	EDTA vs EDTA+PI	140	0	0	0	0
		3,386	17	36	13	8

SEMI-TRYPTIC AND NON-TRYPTIC PEPTIDES ACROSS THREE STUDIES

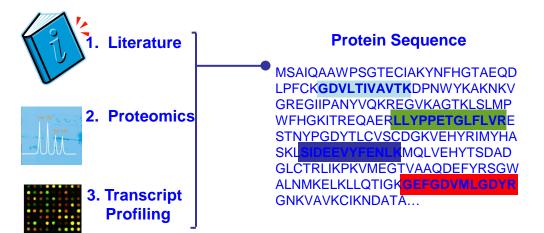
	NCI	NIAID site 1	NIAID site 2
# Sequenced Peptides	3,158	1,527	2,593
# (Fully) Non-tryptic	11	17	1
# Semi-tryptic	506	521	377
# Tryptic	2,641	989	2,215
% semi or non-tryptic peptides	16%	35%	15%

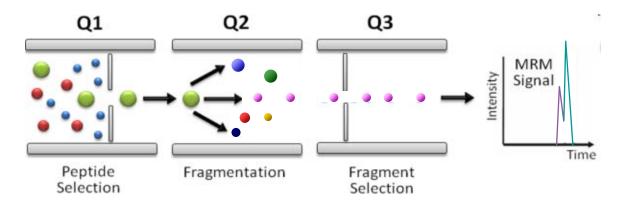
CONCLUSIONS OF PRELIMINARY STUDY

- Large number of components detectable in only heparin or EDTA tubes
- 14% more components detectable in EDTA tubes
- Very few components changed in concentration in any tube type after 24h at RT
- Little effect of protease inhibitor cocktail in EDTA tubes after 24h at RT
- The median CV for normalized peptide intensities within each group is very low at 5-7% (mainly processing related)
- Non-normalized raw intensity median CVs ~ 32-40% (processing and biological variability)
- 16% of sequenced peptides were cleaved at a site other than trypsin, suggesting some degradation
 - Similar to one study (well managed samples)
 - Better than a second study (older sample set, multiple freeze-thaws)

QUALITY ASSESSMENT ASSAYS

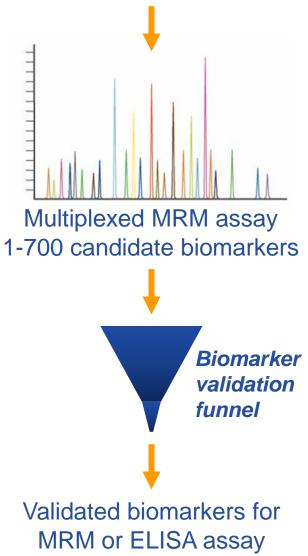
- Multiplexed ELISA assays: Luminex
- Multiplexed MRM mass spec assays

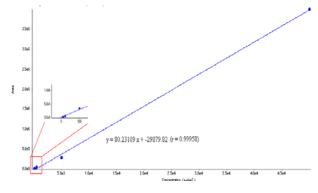

INDEPENDENT ASSESSMENT OF PROTEIN CONCENTRATION AND VARIATION


Lower abundance protein panel:	Higher abundance protein panel:
IL6	VTN
CA125	ECM1
CA19-9	F13A
MUC1	VDP
PSA	AT3
PRL	CFH
LEP	FCN3
OPN	LUM
MIF	
AFP	
CEA	* This group will also be measured by LC-MS

MULTIPLEXED MRM ASSAY DEVELOPMENT STRATEGY

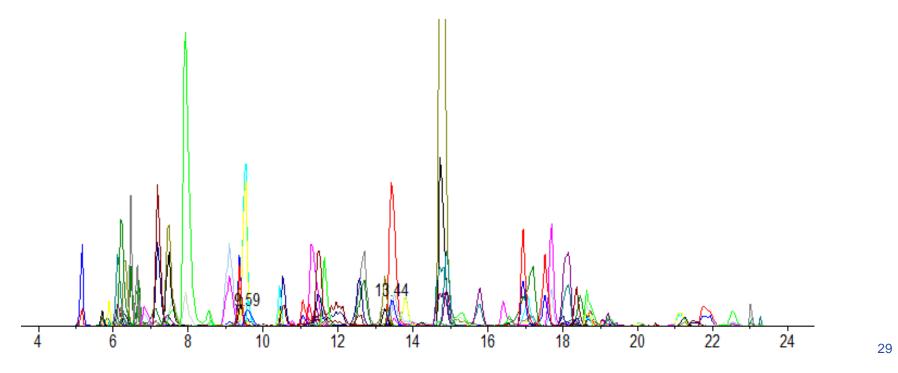
Candidate markers for MRM assay development can come from proteomics or other sources, including the literature




Double selection improves signal/noise and reduces interference

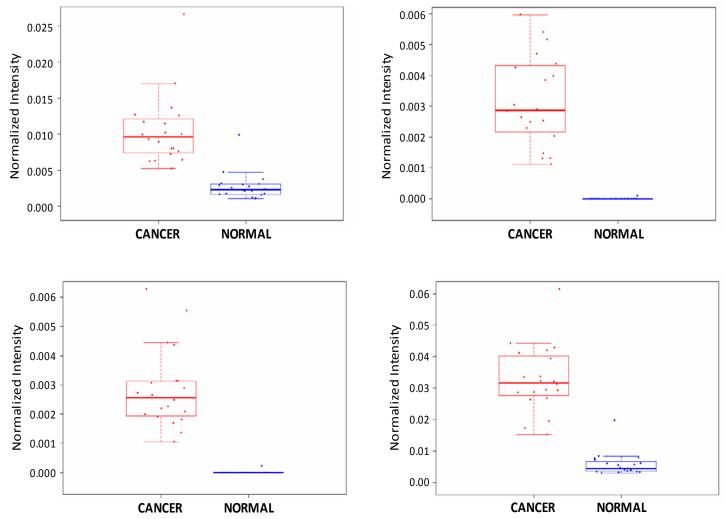
MRM-MS ASSAYS: VERIFY AND VALIDATE CANDIDATE BIOMARKERS

Candidate Biomarkers


Linear and quantitative

- Rapid assay development
- Multiplexed (up to 700 biomarkers)
- Confirms biomarker ID
- Confirms differential expression
- Determines absolute abundance
- Can be validated for regulatory compliance

EXAMPLE OF MRM ASSAY DEVELOPED FROM LIST OF 90 LUNG CANCER Dx CANDIDATES



- Predict best 5 peptides/protein, synthesize
- Determine empirically the best 2, monitor 2 transitions each
- Pre-verification study with plasma from 20 cancer and 20 control subjects
- 64 of the targeted proteins (71%) successfully detected in un-spiked plasma samples (cancer and controls)

CANDIDATE CLASSIFIERS IDENTIFIED

Current study:

Larger set of proteins (700 candidate markers) and more samples (~400) from multiple sources