

Leona W. Ayers, M.D.

PI, Mid-Region AIDS and Cancer Specimen Resource (ACSR/NCI) Sub-Saharan Africa Lymphoma Consortium (SSALC/ACSR/NCI) Professor, Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio, USA

Worldwide Cancer Burden

 In 2010, Cancer is single greatest cause of mortality worldwide
(> 1 million cases in sub-Saharan Africa)

By 2020, 16 million new cancer cases

By 2030, 27 million new cancer cases

SCO Ed ABook 670-674, 2009

Cancer incidence is increasing around the world

Cancers are debilitating and lethal

Treatment is resource intense

Prevention requires energy, commitment and financial resources

Both treatment and prevention require knowledge

Platform for knowledge

Top-down guidelines, methods and modalities

Bottom-up platforms

Platform for knowledge

Integrated

Basic Requirements for a HIV/AIDS Cancer Biorepository Platform

- HIV infected population
- Cancer prevalence
- Medical care conduits
- Cancer diagnosis/tissue preservation (pathologist)
- Established organization to support research (Universities/Institutes)
- Biorepository space

Adults and children living with HIV, by region, 1990–2007

Malignancies in sub-Saharan Africa Gender and Site, 2002

Mulago Hospital Complex, Kampala, Uganda

Makerere University

Uganda Cancer Institute, Kampala, Uganda

Uganda Cancer Institute, Kampala, Uganda

Kenyatta National Hospital Nairobi, Kenya

University of Nairobi

Histology Laboratory

 Trained personnel
Laboratory space but
Electrical outages
Financial constraints

Preservation of Tissue Pre-analytical barrier

Formaldehyde

34-40% gas by weight

10% formalin (4% formaldehyde)

40% formaldehyde Distilled tap water 100ml 900ml

Formalin Fixation

 Neutral buffered formalin
40% formaldehyde 100ml
Sodium Dihydrogen phosphate monohydrate 4g
Disodium hydrogen phosphate anhydrous 6.5g
Distilled water 900ml

Tissue processors pre-analytical barrier

Aged, poorly functioning equipment can be replaced. Electricity is unreliable.

Technical Challenges pre-analytical barrier

Laboratory supply shortages

Pathology Archives, a tissue biorepository

10% Formaldehyde Proteins and DNA, RNA, other

Pre-analytical variability

- Selected samples
- Selected analytes

Analytical variability

- Partial preservation analytes
- Absence of analyte
 - Preservation failure
 - Destruction

Immunohistochemistry (IHC) protein analytes

Plasmablastic Lymphoma

CD20

MUM1

Ki67

HHV8-

Plasmablastic Lymphoma

HHV8 (LANA-1) negative

Diffuse large B-cell lymphoma (DLBCL) Germinal centre B-cell-like (GCB)

CD20

CD10

Ki67

Diffuse large B-cell lymphoma (DLBCL) Activated B-cell phenotype

CD20

MUM1

Ki67

Anaplastic Lymphoma

CD45RO

Ki67

CD30

B cell markers negative NK

Conclusions

- Tissue biorepository offers a bottom up opportunity to implement pre-analytical controls.
- Frozen or specially preserved tissues (ex. RNA later) support isolation of DNA, RNA, proteins and other analytes <u>but</u>:
 - Fresh tissues are difficult to obtain outside of a research protocol.
 - Frozen or refrigerated tissues are expensive to maintain. (electricity unreliable)

Conclusions

Fixed tissues are collected as part of patient care (<50% CA) and autopsy evaluations.

- Optimally fixed tissues are a valuable resource.
- Without pre-analytical controls, FFPE tissues have marginal value.
- Current tissues can reveal scope of cancers not previously clearly documented.

Conclusions (continued)

Non-toxic fixation methods needed Support expanding molecular techniques Deploy with expanded quality assurance Bottom-up platforms required for cancer research

Collaborators

Dr. Lynnette Tumwine Makerere University Kampala, Uganda

Dr. Robert Lukande Makerere University Kampala, Uganda

Dr. Joseph N'dung'u University of Nairobi Nairobi, Kenya

Dr. Emily Rogena University of Nairobi Nairobi, Kenya

Thank you

Leona W. Ayers, M.D.