Banking AIDS-Related Malignancies in sub-Saharan Africa

Leona W. Ayers, M.D.
PI, Mid-Region AIDS and Cancer Specimen Resource (ACSR/NCI)
Sub-Saharan Africa Lymphoma Consortium (SSALC/ACSR/NCI)
Professor, Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
Worldwide Cancer Burden

- In 2010, Cancer is single greatest cause of mortality worldwide
 (> 1 million cases in sub-Saharan Africa)
- By 2020, 16 million new cancer cases
- By 2030, 27 million new cancer cases

SCO Ed ABook 670-674, 2009
Cancer incidence is increasing around the world

- Cancers are debilitating and lethal
- Treatment is resource intense
- Prevention requires energy, commitment, and financial resources
- Both treatment and prevention require knowledge
Platform for knowledge

- Top-down guidelines, methods and modalities
- Bottom-up platforms
Platform for knowledge

- Integrated
Basic Requirements for a HIV/AIDS Cancer Biorepository Platform

- HIV infected population
- Cancer prevalence
- Medical care conduits
- Cancer diagnosis/tissue preservation (pathologist)
- Established organization to support research (Universities/Institutes)
- Biorepository space
Adults and children living with HIV, by region, 1990–2007

The graph shows the number of people living with HIV by region, with the following trends:

- **Sub-Saharan Africa** shows the highest number of people living with HIV, with a significant increase from 1990 to 2007.
- **Middle East & North Africa** also shows a notable increase, though it remains lower than Sub-Saharan Africa.
- **Latin America and Caribbean**, **North America and W & C Europe**, and **Asia** have comparatively lower numbers, with moderate increases over the period.
- **Eastern Europe & Central Asia** and **Oceania** have the lowest numbers, with a steady increase.

The data highlights the ongoing global challenge of HIV/AIDS, with Sub-Saharan Africa bearing the brunt of the epidemic.
Malignancies in sub-Saharan Africa
Gender and Site, 2002

Source: WHO 2004
Mulago Hospital Complex, Kampala, Uganda

Makerere University
Uganda Cancer Institute, Kampala, Uganda
Uganda Cancer Institute, Kampala, Uganda
Histology Laboratory

- Trained personnel
- Laboratory space
 but
- Electrical outages
- Financial constraints
Preservation of Tissue
Pre-analytical barrier

Formaldehyde

34-40% gas by weight

10% formalin (4% formaldehyde)

- 40% formaldehyde: 100ml
- Distilled tap water: 900ml
Formalin Fixation

- **Neutral buffered formalin**

 - 40% formaldehyde 100ml
 - Sodium Dihydrogen phosphate monohydrate 4g
 - Disodium hydrogen phosphate anhydrous 6.5g
 - Distilled water 900ml
Aged, poorly functioning equipment can be replaced. Electricity is unreliable.
Technical Challenges

pre-analytical barrier

- Laboratory supply shortages
Pathology Archives, a tissue biorepository
10% Formaldehyde
Proteins and DNA, RNA, other

- **Pre-analytical variability**
 - Selected samples
 - Selected analytes

- **Analytical variability**
 - Partial preservation analytes
 - Absence of analyte
 - Preservation failure
 - Destruction
Immunohistochemistry (IHC) protein analytes

<table>
<thead>
<tr>
<th></th>
<th>H&E</th>
<th>CD20 (IHC)</th>
<th>CD10 (IHC)</th>
<th>BCL6 (ISH)</th>
<th>EBER (ISH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Burkitt Lymphoma
Plasmablastic Lymphoma

H&E
CD20 CD44

MUM1

Ki67

HHV8-
Plasmablastic Lymphoma

<table>
<thead>
<tr>
<th>Test</th>
<th>Image 1</th>
<th>Image 2</th>
<th>Image 3</th>
<th>Image 4</th>
<th>Image 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>H&E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD20 (IHC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD138 (IHC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUM1 (ISH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBER (ISH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HHV8 (LANA-1) negative
Diffuse large B-cell lymphoma (DLBCL)
Germinal centre B-cell-like (GCB)
Diffuse large B-cell lymphoma (DLBCL)
Activated B-cell phenotype
Anaplastic Lymphoma

H&E

CD45RO

CD30

Ki67

p53

B cell markers negative NK
Conclusions

- Tissue biorepository offers a **bottom up** opportunity to implement pre-analytical controls.

- Frozen or specially preserved tissues (ex. RNA later) support isolation of DNA, RNA, proteins and other analytes **but**:
 - Fresh tissues are difficult to obtain outside of a research protocol.
 - Frozen or refrigerated tissues are expensive to maintain. (electricity unreliable)
Conclusions

- Fixed tissues are collected as part of patient care (<50% CA) and autopsy evaluations.
 - Optimally fixed tissues are a valuable resource.
 - Without pre-analytical controls, FFPE tissues have marginal value.
 - Current tissues can reveal scope of cancers not previously clearly documented.
Conclusions (continued)

- Non-toxic fixation methods needed
 - Support expanding molecular techniques
- Deploy with expanded quality assurance
- **Bottom-up** platforms required for cancer research
Collaborators

Dr. Robert Lukande
Makerere University
Kampala, Uganda

Dr. Lynnette Tumwine
Makerere University
Kampala, Uganda

Dr. Joseph N’dung’u
University of Nairobi
Nairobi, Kenya

Dr. Emily Rogena
University of Nairobi
Nairobi, Kenya
Thank you