A Penny for your Quotes? Assessing the impact of Biological Resource Centers on Life Sciences Research

> Jeff Furman (Boston U & NBER) Scott Stern (Northwestern U & NBER)

NCI's Biospecimen Best Practices Forum November 5, 2007

Motivation: Knowledge accumulation is essential for economic growth

- Long-term economic growth depends on the ability to draw upon an ever-wider body of scientific & technical knowledge
 - the mere production of knowledge does not guarantee that others will be able to exploit it (*Mokyr*, 2002)
 - without mechanisms to ensure access to knowledge (at reasonable cost), researchers must literally "reinvent" the wheel (Rosenberg; Mokyr)
- While economic historians, institutional economists, and sociologists have emphasized the role of "institutions," the micro-foundations of knowledge accumulation are, by and large, still a "black box"
 - the "institutions of open science" depend on a subtle economic logic grounded in reputation and the ability for collective action to overcome the public goods problem of knowledge production (*Dasgupta and David*)
 - few detailed empirical studies demonstrating the impact of specific institutions/practices to the implications of this conceptual framework

Incentives for Cumulative Knowledge Production

- Establishing a knowledge hub within a technical community involves a collection action problem
 - role for public funding / cooperation among competitors
- Even if a knowledge hub is funded, the incentives to participate as a depositor may be too low without explicit rules or norms
 - social objective: maximize the impact of prior knowledge on reducing the costs to discovering new knowledge
 - as long as knowledge producers care about the impact of their knowledge (for intrinsic, career, or strategic reasons), positive deposit incentives
 - however, potential depositors trade off overall impact of knowledge with potential for rent extraction through continued control over knowledge
 - example: lots of citations or lots of coauthorships?

BRCs as Economic Institutions

- Economic institutions such as BRCs have the power to amplify the impact of scientific discoveries by enabling future generations to build on past discoveries
 - within the life sciences, "standing on shoulders" often requires access to specific biological materials or materials collections

- the precision of a given experimental design depends upon the understanding of the biological materials it employs

- The evolution of BRCs as economic institutions seems to reflect the key collective action problems in transferring biological knowledge, via biological materials, across research generations
 - Authentication / Certification
 - Long-Term Preservation
 - Independent Access
 - Economies of Scale and Scope

BRCs as Economic Institutions

Authentication

- The fidelity of discovered knowledge cannot be guaranteed by the initial discoverer but must be able to be replicated
- Misidentification induces costly scientific errors
 - HeLa Scandals
 - contamination common at elite labs, as well as others
- BRCs at the forefront of ensuring biomaterials fidelity

nonetheless concerns persist (Masters, 2002;PNAS, 2002)

Long-Term Preservation

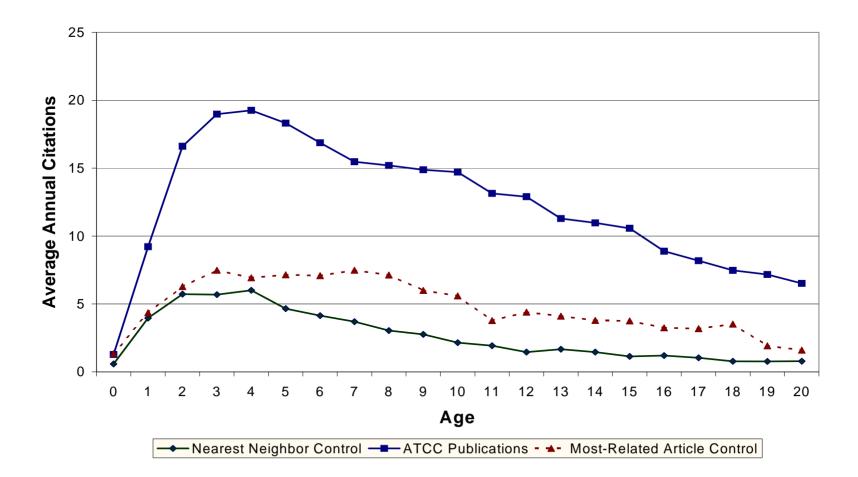
- The importance of a given piece of knowledge (and the physical materials required to exploit that knowledge) are often only recognized long after the time of initial discovery
- e.g., Brock's Unlikely Bacteria
 - 1967: Thomas Brock discovers *Thermus Aquaticus* in Yellowstone National Park geysers
 - 1983: K-Mullis conceives of PCR chain reaction, which requires extremophilie (Taq polymerase)
 - PCR becomes foundational tool for replication of DNA replication for modern molecular biology & biotechnology

BRCs as Economic Institutions

Independent Access

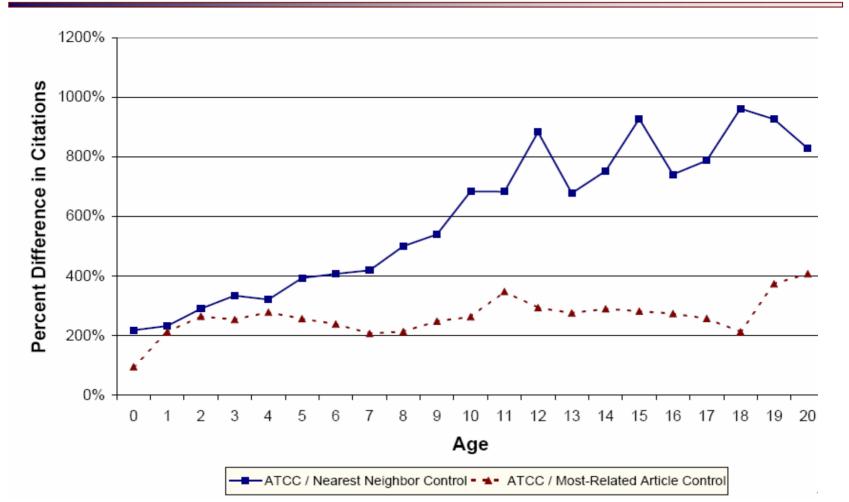
- Substantial gap between private and social benefits of providing independent access to data and materials
 - potential for rent extraction
 - potential to minimize discovery of errors
- BRCs support broad accessibility (subject to scientific background) in ways that the peer-to-peer network does not
 - IP Issues?
 - select materials?
 - democracy of science?

Scale/Scope Economies


- Centralized institutions' investments in infrastructure, technology, & human capital may be cost-efficient relative to alternatives
 - substantial fixed cost component
 - learning-by-doing / specialization
 - minimizing replication of functions and collections across laboratories
 - establishment of a reputation as a "fair broker"
- Orphan Collections
 - even well-maintained collections are often "abandoned"

BRCs: An institutional response to the demand for public goods supporting the accumulation of useful knowledge

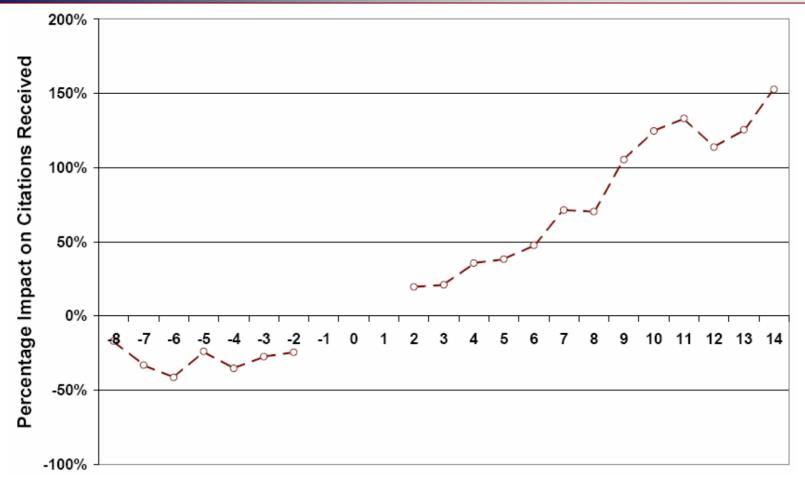
- Establishing effective institutions (funding, leadership, etc.) is subject to a public goods problem
- Even if a research-enhancing institution is funded, the incentives to participate as a depositor may be too low without explicit rules or norms
- The growth in importance of BRCs as a key intermediary reflects systematic efforts over time to overcome these collective action problems


But, do BRCs actually enhance the diffusion of scientific knowledge? How?

In the cross-section, BRC-referenced articles have a higher rate of citation....

- Increasing (as a %) in the time since publication
- Robust to publication age, calendar, & article characteristic controls

In the cross-section, BRC-referenced articles have a higher rate of citation....


- Increasing (as a %) in the time since publication
- Robust to publication age, calendar, & article characteristic controls

Diffs-in-Diffs: Substantial Selection & Marginal Effects (Baseline Specification)

Negative Binomial Models	Forward Citations	
	(4-3)	
	Selection vs.	
	Marginal	108%
BRC-Article (<i>Selection</i>)	<mark>2.08</mark>	→ More
	(0.31)	Than Controls
BRC-Article, Post-Deposit (Marginal)	<mark>1.91</mark>	<mark>91%</mark>
	(0.43)	Boost
Article Family FE	X	After Deposit
Article FE		
Age FE	X	
Calendar Year FE	X	

* Cond FE Neg. Bin. Models, coefficients as IRRs; bootstrapped SEs

Impact of Deposit Grows Over Time and Does Not Exist Prior to Deposit

- This suggests that deposit is, indeed, exogenous and that diffs-indiffs approach usefully identifies marginal (post-deposit) effects
- FE NB model

Rate-of-return analysis: Should the marginal \$ go to another experiment or ensuring that funded experiments are accessible to the next generation?

- Biological Research Social Planner's Objective: In each period, maximize the growth in the stock of knowledge available for future periods
- Compare how BRC accession expenditures compare to traditional research expenditures in creating a pool of knowledge for future researchers
- Counterfactual: Compare the "cost per citation" (i.e., the productivity of the citation production function)
- Combining estimates from a variety of sources, the results suggest a 3x – 10x higher rate of return to investments in authentication and access, relative to simply funding another experiment

Calculating the Cost Per Citation

- <u>Traditional university-based biological research</u>: Adams & Griliches (1996) estimate the *cost per citation* for a large sample of university biology departments in the U.S. during the 1980s
 - for each university department, they compute
 - Total research expenditures
 - Total paper production
 - 5-year citation rate
 - estimated cost per citation = \$2,400 \$4,200
- <u>BRC Accession Costs</u>: Calculate the cost per deposit and the expected boost to citations per deposit (over 5 year window)
 - OECD (2001) estimates "high" cost per BRC-deposit ~\$10,000
 - Citation boost ranges from 8.1 36.8 citations, depending on reference group

BRC Cost-Effectiveness Calculation

Calculation	Baseline Citation Cost	BRC Accession Cost	BRC Citation Boost	BRC Citation Cost	BRC Cost- Effective- ness Index*
BRC-Linked Article Citation Boost	\$2,400	\$10,000	÷ 36.8 =	= \$271	10.63
"Top Ten" Uni. Citation Boost	\$2,400	\$10,000	÷ 13.9 =	= \$719	4.01
Random Uni. Citation Boost	\$2,400	\$10,000	÷ 8.1 =	= \$1238	2.81

Implications

- Knowledge Enhancing Institutions, such as BRCs, are closely associated with the process of cumulative knowledge production within specific scientific or technological fields
- They can influence future knowledge accumulation in 2 ways:
 - <u>the *Selection Effect*</u>: Institutions can attract researchers and knowledge production with intrinsically high cumulative value
 - <u>the *Marginal Effect*</u>: The impact of knowledge is amplified by its association with a knowledge enhancing institution
 - the magnitude of that impact can *grow* with time
- BRCs evidence all of these characteristics
 - further, relative to traditional grant mechanisms, BRCs seem effective at maximizing the knowledge pool available for future research
- Though cumulative knowledge production is central to economic growth, the extent of knowledge growth depends on the effectiveness of often "invisible" institutions, whose features can be influenced by public policy