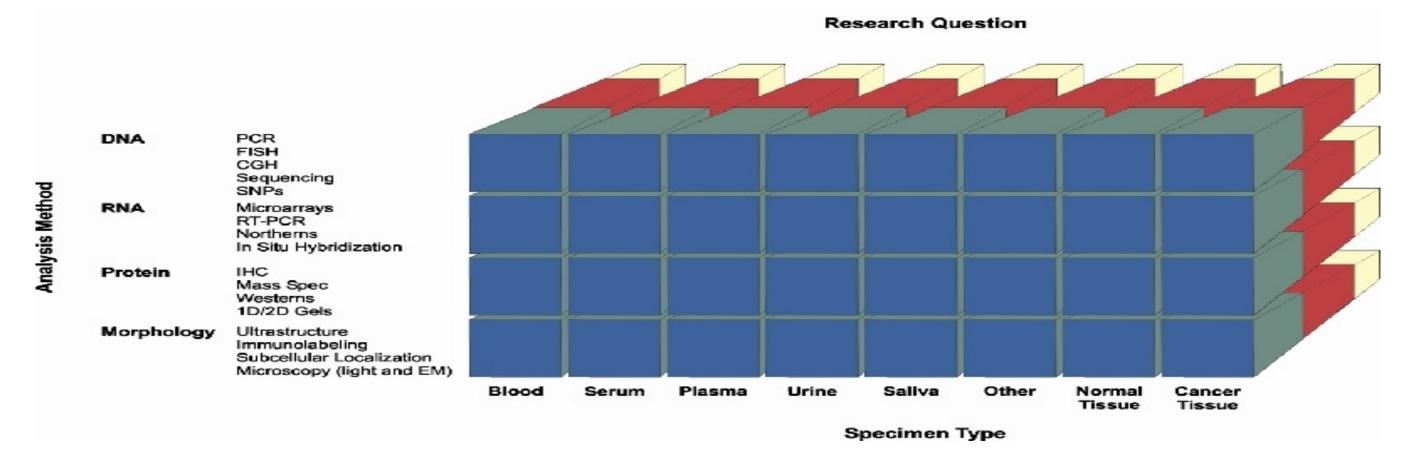
The NCI Biospecimen Research Network: The influence of warm ischemic time on gene expression profiles for colon cancer

Abstract: Since access to high quality human biospecimens has been identified as a critical resource to support genomic- and proteomic-based studies, the NCI established the Office of Biorepositories and Biospecimen Research (OBBR) to coordinate biospecimen-related policies and practices for NCI-supported biorepository resources. Few studies have been published demonstrating the relationship between specimen handling, quality, and reproducibility of data in cancer research. The NCI Biospecimen Research Network (BRN), organized by the OBBR, is conducting biomolecular studies for the development of appropriate data-driven, evidence-based practices and protocols for specific specimen types and molecular analysis platforms.


The present study examines the influence of warm ischemic time on RNA quantity, quality, and gene expression profiles in colon cancer tissue. Twenty-eight cases of matched frozen colon normal and cancer tissue samples with four cases per five-minute interval from 20 to 50 minutes were microdissected using laser capture microdissection (LCM) and RNA purified. RNA was quantified by nanodrop and quality determined by Bioanalyzer. After RNA amplification and labeling, gene expression was assessed for cancer samples using Affymetrix Human Genome U133 Plus 2.0 GeneChips. Differential expression comparing the shortest ischemic time with other ischemic times was performed using principal component analysis, hierarchal clustering, and ANOVA. There was no correlation between ischemic time and RNA quantity and RNA quality. All cancer samples showed good to excellent quality RNA except one that showed poor quality. All normal samples showed poor quality RNA except five cases that showed excellent quality and therefore not subjected to gene expression analysis. For the cancer cases, three trends of gene expression changes over ischemic time were observed. Patterns include approximately 462 genes involved in cell signaling pathways such as EGFR, CDK2, and MADD, cell growth and proliferation, cell death, cell cycle, apoptosis, immune response, and cell adhesion. Selected genes will be validated using quantitative RT-PCR. This study demonstrates that warm ischemic time in colon cancer may give rise to artifactual changes in expression of genes that are significant in colon cancer.

Different morphological and biomolecule analysis techniques require different methods of biospecimen preservation

The specimen i	is vial	ole
----------------	---------	-----

Patient Medical/ Surgical Acquisition Procedures	Handling/ Processing Storage Distribution								
Time 0									
Pre-acquisition	Post-acquisition								
- Antibiotics	- Time at room temperature								
- Other drugs	- Temperature of room								
- Type of anesthesia	- Type of fixative								
- Duration of anesthesia	- Rate of freezing								
- Arterial clamp time	- Size of aliquots								
- Blood pressure variations	- Type of collection container								
- Intra-op blood loss	- Biomolecule extraction method								
- Intra-op blood administration	- Storage temperature								
- Intra-op fluid administration	- Storage duration								
- Pre-existing medical conditions	- Storage in vacuum								

Different morphological and biomolecule analysis techniques require different methods of biospecimen preservation

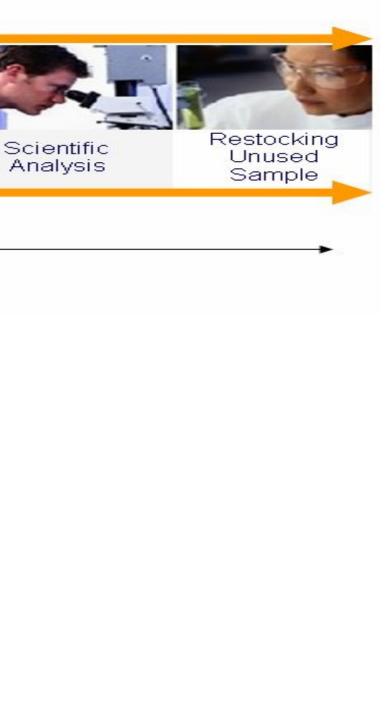
Materials and Methods

Microdissection and RNA isolation

Total 56 colon specimens (28 matched normal/cancer)

• Tissue sections cut at 8um thick sections; Hematoxylin and Eosin stained (for optimum visualization before laser microdissection)

• Laser microdissected tumor and normal epithelium with 3000 shots (approximately 15,000 cells) in less than 45 minutes


• Isolated total RNA using PicoPure Kit with 15 minute DNAse digestion

RNA Quality and Quantity

• Bioanalyzer for quality. RNA Integrity Numbers (RIN) ≥5, 28S/18S ratios ≥ 0.8

• NanoDrop for concentration.

Hien Dang¹, Helen Moore¹, Audrey Player², Yonghong Wang², Ernie Kawasaki², Kerstin David³, Joerg Spangenberg³, Hartmut Juhl³, Jim Vaught¹, Anna Barker², John Gillespie⁴, Carolyn Compton¹.

Amplification, Hybridization

- Two rounds amplification in vitro transcription biotin incorporation and fragmented
- Streptavidin-phycoerthythin Staining
- Hybridizations using Affymetrix U133 plus 2.0 Genechip in duplicate

Analysis

• Data analysis in GCOS (Affymetrix provided). Signal intensities normalized using Z-transformation and Quantile transformation

• Principal component analysis, hierarchal clustering, ANOVA and gene ontology and pathway analysis using Ingenuity Pathway Analysis

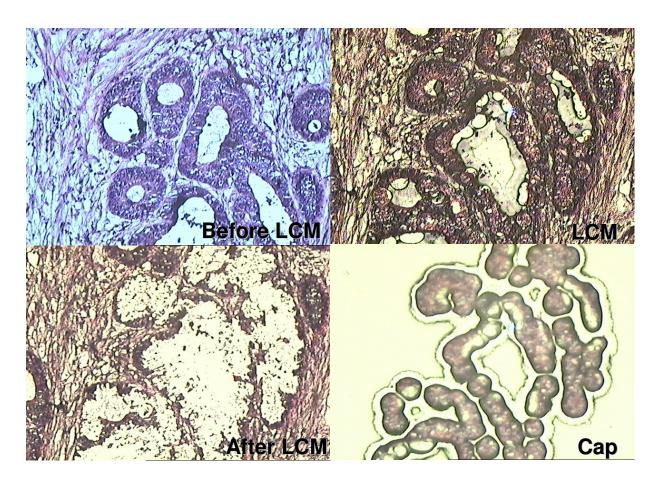


Figure 1 LCM of colon tissue (A) Cancer and (B) Normal.

2A							2B						
	Time	Case ID	Con. (Ng/ul)	RIN	Ratio	Quality		Time	Case ID	Con. (Nq/ul)	RIN	Ratio	Quality
	18-20	A114 TN 14	18.8	2.4	0	GOOD		18-20	A114 TP 1	12.1	6.9	1.6	EX
		A243 TN 15	9.7	8.5	1.5	EX			A243 TC 7	26.2	4.8	1.3	EX
		A548 TN 14	5.8	2.4	0	POOR			A548 TC 9	9.6	6.7	1.2	GOOD
		A622 TN 13	11	3.7	0.6	POOR			A622 TP2	11.92	7.2	1.2	EX
	23-25	A156 TN 16	5.21	4.1	0.7	POOR		23-25	A156 TP 2	20.46	6.5	1	EX
		A238 TN 15	24.24	0	0.2	POOR			A238 TP 2	9.91	6.6	1.6	EX
		A511 TN 15	13.87	2.7	0.3	POOR			A511 TP 3	22.35	7.7	1.6	EX
		A165 TN 16	13.57	4.2	0.6	POOR			A165 TP 3	7.04	5.2	1.4	EX
	28-30	A161 TN 14	3.36	4.4	0.7	POOR		28-30	A161 TP 2	14.9	5	1.5	GOOD
		A182 TN 13	2.06	6.3	1.8	POOR			A182 TC 7	5.4	7.1	1.7	EX
		A725 TN 14	1.25	4.7	0.9	POOR			A725 TP 4	15.7	7.6	2	EX
- 1		A101 TN 14	5.39	3.6	0.6	POOR			A101 TP 3	13.9	7.7	1.1	EX
	33-35	A251 TN 13	8.4	3.9	0.4	POOR		33-35	A251 TC 7	15.1	7.2	з	E×
		B128 TN 16	2.6	4.9	0.5	POOR			B128 TP 3	9.03	6.6	0.9	EX
		B329 TN 16	25.9	4	0.3	POOR			B329 TC 10	7.41	7.1	1.1	EX
		A76 TN 16	7.3	4.2	0.6	POOR			A76 TC 7	8.49	6.6	1	EX
	38-40	A11 TN 14	17.1	5.7	1.1	GOOD		38-40	A11 TP 1	19.6	7.8	1.7	EX
- 8		A197 TN 16	4.9	6.2	0.8	EX			A197 TP 2	11.81	7.9	1.7	E×
		A423 TN 15	7.8	5.2	0.8	GOOD			A423 TC 7	12.4	7.8	1.9	EΧ
		A151 TN 16	7.07	4.1	0.3	GOOD			A151 TP 2	9.9	7.9	1.8	EX
	43-45	A24 TN 13	11.93	3.8	0.6	POOR		43-45	A24 TP 4	9.25	5.9	0.9	GOOD
		A201 TN 16	73.4	2.3	0	POOR			A201 TC 9	12.23	5.5	1.2	GOOD
		A304 TN 16	10.07	4.3	0.6	POOR			A304 TC 8	7.01	6.5	1.2	EX
		A546 TN 15	12.25	3.3	0	POOR			A546 TC 10	8.69	6	1	EX
	48-50	A387 TN 14	8.4	3.1	0.2	POOR		48-50	A387 TC 10	7.3	4.8	1.4	GOOD
	.0 00	B153 TN 16	24.9	3.6	0.1	POOR			B153 TC 7	12.8	З	0	POOR
		B222 TN 16	11.9	6.9	1.7	EX			B222 TP 3	24.7	7.9	1.8	EΧ
		A61 TN 16	22.6	5.1	1.2	EX			B61 TC 7	9.54	4.8	1	GOOD
		NOT HN TO	22.0	3.1	1.2	EA							

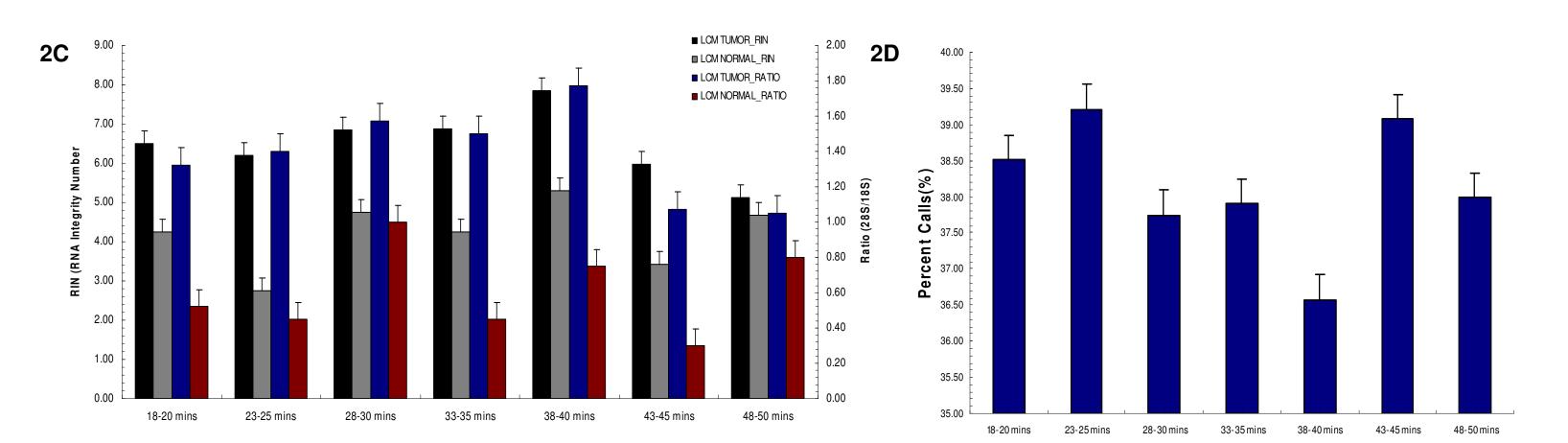


Figure 2. Recovery and quality of RNA from microdissected (A) colon cancer and (B) normal colonic epithelium. (C) Quantity and quality for both normal and cancer. (D) Percent probe sets called present for cancer samples.

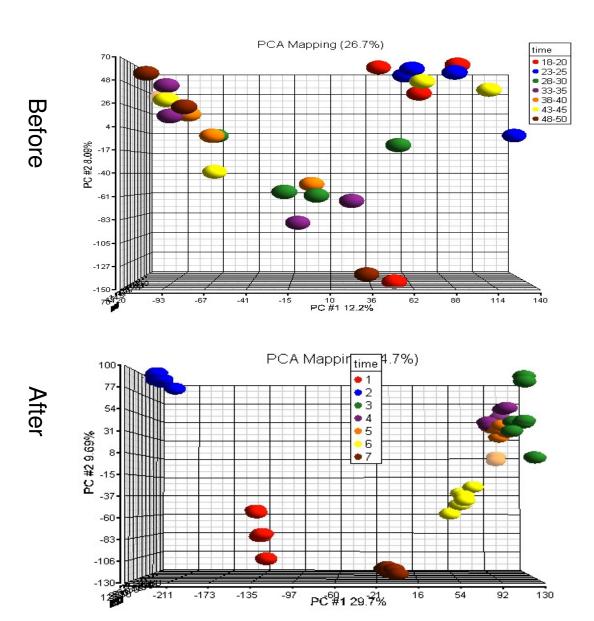
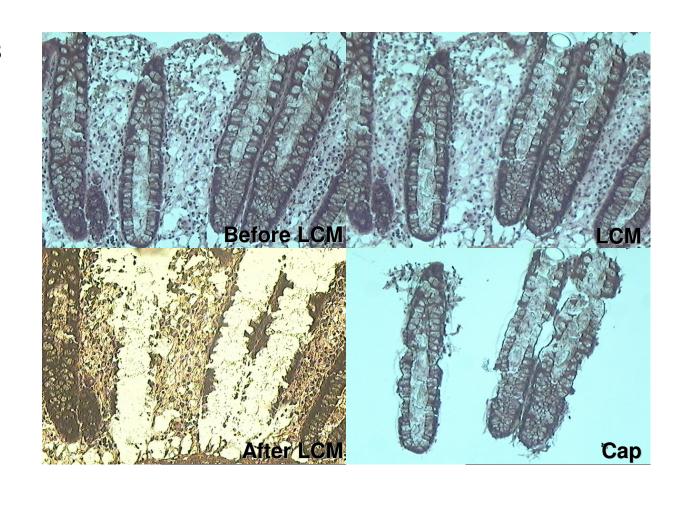
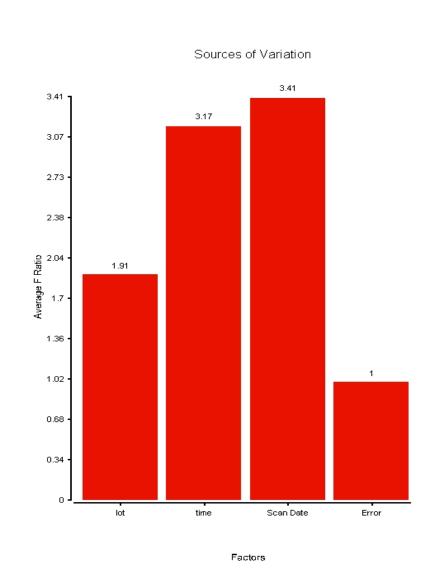
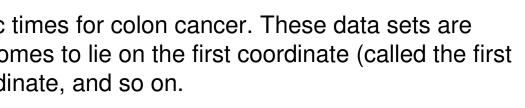





Figure 3. Principal Component Analysis (PCA) for the different ischemic times for colon cancer. These data sets are analyzed such that the greatest variance by any projection of the data comes to lie on the first coordinate (called the first principal component), the second greatest variance on the second coordinate, and so on.

(1) Office of Biorepositories and Biospecimen Research – National Cancer Institute, (2) National Cancer Institute, (3) Indivumed GmbH, (4) SAIC-Frederick, Inc.

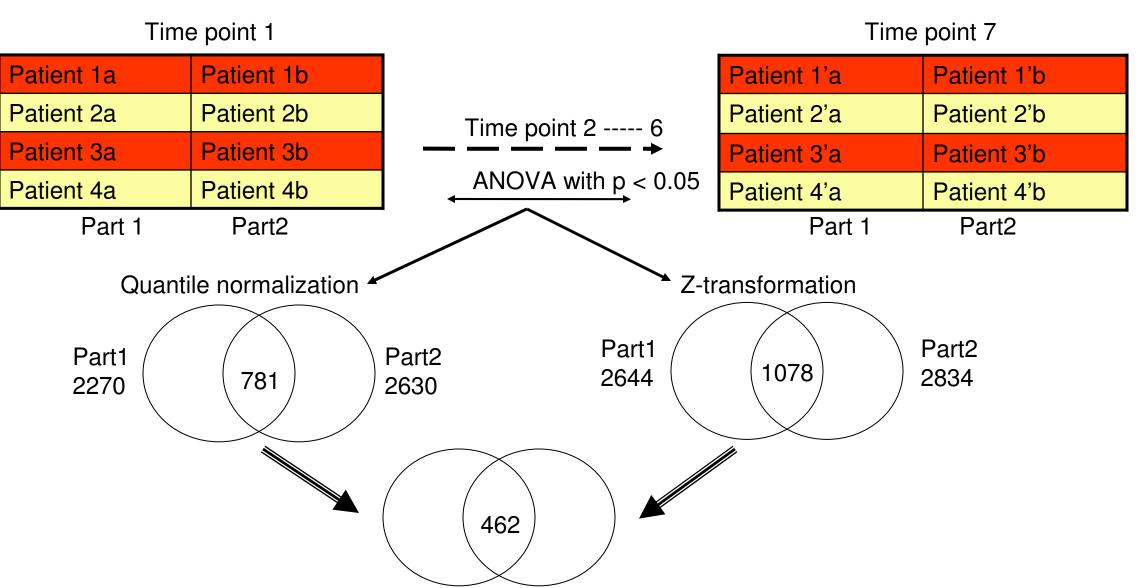
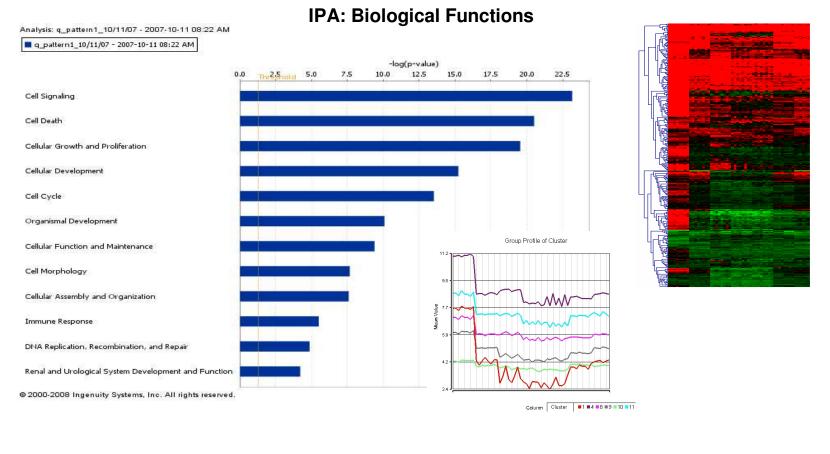
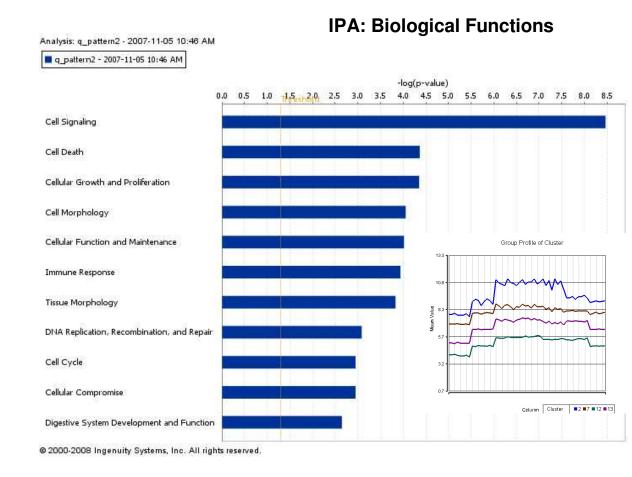




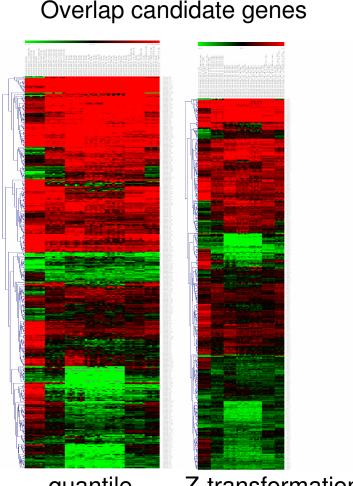
Figure 4. Gene expression analysis using Z-transformation and Quantile Normalization to find overlap candidate genes

IPA: Biological Functions Analysis: q_pattern3 - 2007-11-05 10:47 AM **q_pattern3 - 2007-11-05 10:47 AM** -log(p-value) 0.0 0.5 1.0 <mark>mL5_{shol}2</mark>.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Cell Signaling Cellular Function and Maintenan Cellular Development Organismal Developmen Renal and Urological System Development a Cancer roup Profile of Cluste Gastrointestinal Disease Immune Response Cellular Growth and Proliferation Cell Death Tissue Morphology Connective Tissue Development and Function Column Cluster ■3

© 2000-2008 Ingenuity Systems, Inc. All rights reserved

Gene	Description	Туре				
CA12	Carbonic anhydrase XII	enzyme				
MAOB	Monoamine oxidase B	enzyme				
BCR	Breakpoint cluster region	kinase				
CDK2	Cyclin-dependent kinase 2	kinase				
EGFR	Epidermal growth factor receptor (erythroblastic leukemia viral (v-erb-b) oncogene homolog, avian)	kinase				
LCK	Lymphocyte-specific protein tyrosine kinase	kinase				
PPP3CA	Protein phosphatase 3 (formerly 2B), catalytic subunit, alpha isoform	phosphatase				
PML	Promyelocytic leukemia	tran scription regulator				
IL2RG	Interleukin 2 receptor, gamma (severe combined immunodeficiency)	transmembrane receptor				
FGB	Fibrinogen beta chain	Other				
GABR B3	gamma-aminobutyric acid (GABA) A receptor, beta 3	ion channel				

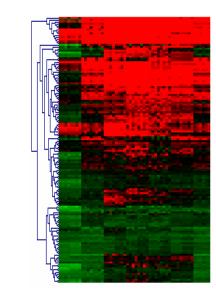
gamma-aminobutyric acid (GABA) A ion channel receptor, pi


IL-4 Signaling

FGF Signaling

p53 Signaling

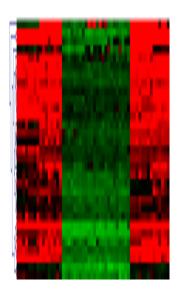
Hypoxia Signaling in the Cardiova


Analysis: q_pattern3 - 2007-11-05 10:47 AM

Z-transformatior

q_pattern1_10/11/07 - 2007-10-11 08:22 AM	Ratio												
	0.00	0.25	0.50	0.75	1.00	1.25 1		-value) 75 2.0	0 2.25	2.50	2.75	3.00	3.25
20		1.1		11		1111	Synold		- 11	-	1	1	
NF-x8 Signaling				-									
Integrin Signaling	1		-										
				-									
PTEN Signaling				-				1					
ERK/MAPK Signaling													
VEGF Signaling		_	-				-						
, consequences			1			1							
Glycolysis/Gluconeogenesis													
Apoptosis Signaling			-			n.							
			1										
SAPK/JNK Signaling			1	1									
PI3K/AKT Signaling													
B Cell Receptor Signaling					-								
				1									
Interferon Signaling				>									
Cell Cycle: G2/M DNA Damage Checkpoint Regulati	ion 🗖		, e										
EGF Signaling			-	-									
GABA Receptor Signaling			+										
IL-2 Signaling	0			1	L								
Cell Cycle: G1/S Checkpoint Regulation			4	-									
p53 Signaling	L	P											
Wnt/β-catenin Signaling		Ŧ.											
Acute Phase Response Signaling		.											
	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07 0	0.08 0	.09 0.	10 0	.11 0	12 1

Figure 5. Gene expression profile, biological gene ontology and pathways in 291genes found in pattern 1; U,D



Analysis: q_pattern2 - 2007-11-05 10:46 AM 🔳 q_pattern2 - 2007-11-05 10:46 AM 🛛 🕂 Ratio 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 Acute Phase Response Signaling LPS/IL-1 Mediated Inhibition of R) GABA Receptor Signa IL-2 Signaling

IPA: Canonical Pathways

Figure 6. Gene expression profile and gene ontology of 138 candidate genes found in pattern 2; D,U,D.

© 2000-2008 Ingenuity Systems, Inc. All rights reserved.

IPA: Canonical Pathways

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11

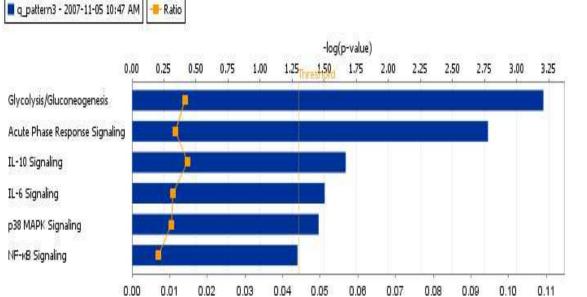


Figure 7. Gene expression profile and gene ontology of 31 candidate genes found in pattern

© 2000-2008 Ingenuity Systems, Inc. All rights reserved.

Exp Pattern Therapuetic Drugs Associated with Gene Methazolamide, hvdrochlorothiazide, acetazolamide, 1; U,D trichloromethiazide, chlorothiazide, chlorthalidone, ben zthiazide, sulfacetamide, topiramate Pattern 1; U,D Safinamide, ladostigil, rasagiline, selegiline, dextroamphetamine, procainamide, tranylcypromine, phenelzine, isocarboxazid, benzphetamine Pattern matinib 1; U,D Pattern 1; U,D BMS-387032, flavopiridol Cetuximab, AEE 788, panitumumab, BMS-599626, Pattern ARRY-334543, XL647, canertinib, gefitinib, HKI-272, 1; U,D PD 153035, lapatinib, vandetanib, erlotinib Dasatinib Pattern 1; U,D Pattern ISAtx-247, tacrolimus, pimecrolimus, cyclosporin A 1; U,D Pattern Arsenic trioxide 1; U,D Pattern Aldesleukin, denileukin diftitox 1; U,D Pattern 2; D,U,D Thrombin Pattern 3; U,D,U Methohexital, aspirin/butalbital/caffeine, aspirin/butalbital/caffeine/codeine, pagoclone, alphadolone, SEP 174559, acetaminophen/butalbital/caffeine, sevoflurane isoflurane, gaboxadol, isoniazid, felbamate, etomidate, muscimol, halothane, fluoxetine/olanzapine, amobarbital, atropine/hyoscyamine/phenobarbital/scopolamine acetaminophen/butalbital, eszopiclone, mephobarbital, hyoscyamine/phenobarbital, acetaminophen/butalbital/caffeine/codeine, butabarbital, temazepam, zolpidem, lorazepam, olanzapine clonazepam, zalepion, secobarbital, butalbital, phenobarbital, pentobarbital, thiopental, D 23129 desflurane, methoxyflurane, enflurane, pregnenolone Alphadolone, sev oflurane, isoflurane, isonia zid felbamate, etomidate, halothane, fluoxetine/olanzapine, 3; U,D,U eszopiclone, zolpidem, lorazepam, olanzapine, zaleplon, secobarbital, phenobarbital, pentobarbital desflurane, methoxyflurane, enflurane

Conclusions and Future Experiments

 No correlation between RNA quality and quantity from samples Colon cancer showed good to excellent quality RNA •Normal colon showed essentially poor quality RNA • With respect to ischemia, there are 3 patterns of gene expression changes and include clinically significant genes

 Further validation using RT-PCR of 10-15 key candidate genes